@article{VSGU_2020_26_1_a3,
author = {M. V. Shamolin},
title = {Problems of differential and topological diagnostics. {Part~4.} {The} case of exact trajectorial measurements},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {52--68},
year = {2020},
volume = {26},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2020_26_1_a3/}
}
TY - JOUR AU - M. V. Shamolin TI - Problems of differential and topological diagnostics. Part 4. The case of exact trajectorial measurements JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2020 SP - 52 EP - 68 VL - 26 IS - 1 UR - http://geodesic.mathdoc.fr/item/VSGU_2020_26_1_a3/ LA - ru ID - VSGU_2020_26_1_a3 ER -
%0 Journal Article %A M. V. Shamolin %T Problems of differential and topological diagnostics. Part 4. The case of exact trajectorial measurements %J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ %D 2020 %P 52-68 %V 26 %N 1 %U http://geodesic.mathdoc.fr/item/VSGU_2020_26_1_a3/ %G ru %F VSGU_2020_26_1_a3
M. V. Shamolin. Problems of differential and topological diagnostics. Part 4. The case of exact trajectorial measurements. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 26 (2020) no. 1, pp. 52-68. http://geodesic.mathdoc.fr/item/VSGU_2020_26_1_a3/
[1] M. V. Shamolin, “Problems of differential and topological diagnostics. Part 1. Motion equations and classification of malfunctions”, Vestnik of Samara University. Natural Science Series, 25:1 (2019), 32–43 (In Russ.) | DOI | MR | Zbl
[2] M. V. Shamolin, “Problems of differential and topological diagnostics. Part 2. Problem of differential diagnostics”, Vestnik of Samara University. Natural Science Series, 25:3 (2019), 22–31 (In Russ.) | DOI | MR
[3] M. V. Shamolin, “Problems of differential and topological diagnostics. Part 3. The checking problem”, Vestnik of Samara University. Natural Science Series, 25:4 (2019), 36–47 (In Russ.) | DOI | MR | Zbl
[4] I. T. Borisenok, M. V. Shamolin, “Resolving a problem of differential diagnostics”, Fundamental and Applied Mathematics, 5:3 (1999), 775–790 (In Russ.) | MR | Zbl
[5] M. V. Shamolin, Certain problems of differential and topological diagnostics, 2nd edition, revised and enlarged, Ekzamen, M., 2007, 320 pp. (In Russ.)
[6] M. V. Shamolin, “Foundations of Differential and Topological Diagnostics”, J. Math. Sci., 114 (2003), 976–1024 | DOI | MR | Zbl
[7] P. P. Parkhomenko, E. S. Sagomonian, Foundations of technical diagnostics, Energiia, M., 1981, 464 pp. (In Russ.)
[8] L. A. Mironovskii, “Functional diagnosis of dynamic systems”, Automation and Remote Control, 1980, no. 8, 96–121 (In Russ.)
[9] Yu. M. Okunev, N. A. Parusnikov, Structural and algorithmic aspects of modeling for control problems, Izd-vo MGU, M., 1983 (In Russ.)
[10] M. G. Chikin, “Phase-constrained systems”, Automation and Remote Control, 1987, no. 10, 38–46 (In Russ.) | MR | Zbl
[11] V. P. Zhukov, “Sufficient and necessary conditions for the asymptotic stability of nonlinear dynamical systems”, Automation and Remote Control, 55:3 (1994), 321–330 | MR | Zbl
[12] V. P. Zhukov, “On the sufficient and necessary conditions for robustness of the nonlinear dynamic systems in terms of stability retention”, Automation and Remote Control, 69 (2008), 27–35 | DOI | MR | Zbl
[13] V. P. Zhukov, “Reduction of Stability Study of Nonlinear Dynamic Systems by the Second Lyapunov Method”, Automation and Remote Control, 66 (2005), 1916–1928 | DOI | MR | Zbl
[14] I. T. Borisenok, M. V. Shamolin, “Solving the problem of differential diagnostics by the method of statistical tests”, Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2001, no. 1, 29–31 (In Russ.) | MR | Zbl
[15] A. Beck, M. Teboulle, “Mirror Descent and Nonlinear Projected Subgradient Methods for Convex Optimization”, Oper. Res. Lett., 31:3 (2003), 167–175 | DOI | MR | Zbl
[16] A. Ben-Tal, T. Margalit, A. Nemirovski, “The Ordered Subsets Mirror Descent Optimization Method with Applications to Tomography”, SIAM Journal on Optimization, 12:1 (2001), 79–108 | DOI | MR | Zbl
[17] W. Su, S. Boyd, E. Candes, “A Differential Equation for Modeling Nesterov-s Accelerated Gradient Method: Theory and Insights”, J. Machine Learning Res., 17:153 (2016), 1–43, arXiv: 1503.01243 | MR
[18] M. V. Shamolin, “Diagnostics of Gyro-Stabilized Platform, Included in the Aircraft Motion Control System”, Electronic Modeling, 33:3 (2011), 121–126 (In Russ.)
[19] M. V. Shamolin, “Diagnostics of Aircraft Motion in Planning Descent Mode”, Electronic Modeling, 32:5 (2010), 31–44 (In Russ.)
[20] W. H. Fleming, “Optimal Control of Partially Observable Diffusions”, SIAM Journal on Control, 6:2 (1968), 194–214 | DOI | MR | Zbl
[21] D. H. Choi, S. H. Kim, D. K. Sung, “Energy-efficient Maneuvering and Communication of a Single UAV-based Relay”, IEEE Transactions on Aerospace and Electronic Systems, 50:3 (2014), 2119–2326 | DOI
[22] D. T. Ho, E. I. Grotli, P. B. Sujit, T. A. Johansen, J. B. Sousa, “Optimization of Wireless Sensor Network and UAV Data Acquisition”, Journal of Intelligent Robotic Systems, 78:1 (2015), 159–179 | DOI
[23] C. Ceci, A. Gerardi, P. Tardelli, “Existence of Optimal Controls for Partially Observed Jump Processes”, Acta Applicandae Mathematicae, 74:2 (2002), 155–175 | DOI | MR | Zbl
[24] U. Rieder, J. Winter, “Optimal Control of Markovian Jump Processes with Partial Information and Applications to a Parallel Queueing Model”, Mathematical Methods of Operational Research, 70 (2009), 567–596 | DOI | MR | Zbl
[25] M. Chiang, C. W. Tan, P. Hande, T. Lan, “Power control in wireless cellular networks”, Foundation and Trends in Networking, 2:4 (2008), 381–533 | DOI | MR
[26] E. Altman, K. Avrachenkov, I. Menache, G. Miller, B. J. Prabhu, A. Shwartz, “Power control in wireless cellular networks”, IEEE Transactions on Automatic Control, 54:10 (2009), 2328–2340 | DOI | MR | Zbl
[27] R. J. Ober, “Balanced Parameterization of Classes of Linear Systems”, SIAM Journal on Control and Optimization, 29:6 (1991), 1251–1287 | DOI | MR | Zbl
[28] R. J. Ober, D. McFarlane, “Balanced Canonical Forms for Minimal Systems: A normalized Coprime Factor Approach”, Linear Algebra and its Applications, 122-124 (1989), 23–64 | DOI | MR | Zbl
[29] A. C. Antoulas, D. C. Sorensen, Y. Zhou, “On the Decay Rate of Hankel Singular Values and Related Issues”, Systems Control Letters, 46 (2002), 323–342 | DOI | MR | Zbl
[30] D. A. Wilson, “The Hankel Operator and its Induced Norms”, International Journal of Control, 42 (1985), 65–70 | DOI | MR | Zbl
[31] B. D. O. Anderson, E. I. Jury, M. Mansour, “Schwarz Matrix Properties for Continuous and Discrete Time Systems”, International Journal of Control, 3 (1976), 1–16 | DOI | MR
[32] R. Peeters, B. Hanzon, M. Olivi, “Canonical Lossless State-Space Systems: Staircase Forms and the Schur Algorithm”, Linear Algebra and its Applications, 425:2-3 (2007), 404–433 | DOI | MR | Zbl