@article{VSGU_2020_26_1_a2,
author = {V. P. Tsvetov},
title = {Semigroups of binary operations and magma-based cryptography},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {23--51},
year = {2020},
volume = {26},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2020_26_1_a2/}
}
V. P. Tsvetov. Semigroups of binary operations and magma-based cryptography. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 26 (2020) no. 1, pp. 23-51. http://geodesic.mathdoc.fr/item/VSGU_2020_26_1_a2/
[1] W. Diffie, M. E. Hellman, “New Directions in Cryptography”, IEEE Transactions on Information Theory, IT-22 (1976), 644–654 | DOI | MR | Zbl
[2] R. C. Merkle, “Secure Communications over Insecure Channels”, Communications of the ACM, 21:4 (1978), 294–299 https://nakamotoinstitute.org/static/docs/secure-communications-insecure-channels.pdf | DOI | MR | Zbl
[3] A. Shamir, “How to share a secret”, Communications of the ACM, 22:11 (1979), 612–613 | DOI | MR | Zbl
[4] T. Matsumoto, H. Imai, “Public Quadratic Polynomial-tuples for effcient signature-verification and message-encryption”, Advances in Cryptology — EUROCRYPT'88, EUROCRYPT 1988, Lecture Notes in Computer Science, 330, eds. Barstow D. et al., Springer, Berlin–Heidelberg, 419–453 | DOI | MR
[5] J. Patarin, “Hidden Fields Equations (HFE) and Isomorphisms of Polynomials (IP): Two New Families of Asymmetric Algorithms”, Advances in Cryptology — EUROCRYPT-96, EUROCRYPT 1996, Lecture Notes in Computer Science, 1070, ed. Maurer U., Springer, Berlin–Heidelberg, 33–48 | DOI | MR | Zbl
[6] P. Shor, “Algorithms for quantum computation: discrete logarithms and factorings”, Proceedings of the 35th Annual Symposium on Foundations of Computer Science, 1994, 124–134 | DOI | MR
[7] J. D. Bernstein, J. Buchmann, E. Dahmen (eds.), Post-quantum cryptography, Springer, Berlin, 2009, 245 pp. | DOI | MR
[8] N. Koblitz, “Elliptic Curve Cryptosystems”, Mathematics of Computation, 48:177 (1987), 203–209 https://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866109-5/S0025-5718-1987-0866109-5.pdf | DOI | MR | Zbl
[9] N. Koblitz, “Hyperelliptic Cryptosystems”, Journal of cryptology, 1:3 (1989), 139–150 | DOI | MR | Zbl
[10] O. Goldreich, S. Goldwasser, S. Halevi, “Public-key cryptosystems from lattice reduction problems”, Proceedings of the 17th Annual International Cryptology Conference on Advances in Cryptology, CRYPTO 97, 1997, 112–131 | DOI | MR | Zbl
[11] O. Regev, “Lattice-based cryptography”, Advances in Cryptology – CRYPTO 2006, CRYPTO 2006, Lecture Notes in Computer Science, 4117, ed. Dwork C., Springer, Berlin–Heidelberg, 131–141 | DOI | MR | Zbl
[12] G. Maze, C. Monico, J. Rosenthal, “Public key cryptography based on semigroup actions”, Advances in Mathematics of Communications, 1:4 (2007), 489–507 | DOI | MR | Zbl
[13] R. Ebrahimi Atani, S. Ebrahimi Atani, S. Mirzakuchaki, “Public key cryptography using semigroup actions and semirings”, Journal of Discrete Mathematical Sciences Cryptography, 4 (2008) | MR
[14] S. Carter, M. N. Wegman, “Universal Class of Hash Function”, J. Computer and System Sciences, 18:2 (1979), 143–154 https://www.cs.princeton.edu/courses/archive/fall09/cos521/Handouts/universalclasses.pdf | DOI | MR | Zbl
[15] J. Denes, A. D. Keedwell, Latin Squares. New Developments in the Theory and Applications, Nord-Holland Publishing Co, Amsterdam, 1981, 469 pp. http://lib.mexmat.ru/books/191480
[16] S. Bakhtiari, R. Safavi-Naini, J. Pieprzyk, “A message Authentication Code based on Latin Squares”, Proc. Australasian on Information Security and Privacy, 1997, 194–203 | DOI | Zbl
[17] E. Dawson, D. Donovan, A. Offer, “Quasigrops, isotopism and authentication schemes”, Australasian Journal of Combinatorics, 13 (1996), 75–88 | MR | Zbl
[18] M. M. Glukhov, “O primeneniyakh kvazigrupp v kriptografii”, Prikladnaya diskretnaya matematika, 2008, no. 2, 28–32 | Zbl
[19] A. V. Cheremushkin, “Partially invertible strongly dependent n-ary operations”, Sbornik: Mathematics, 211:2 (2020), 291–308 | DOI | MR | Zbl
[20] G. Hessenberg, “Grundbegriffe der Mengenlehre”, Abhandlungen der Friesschen Schule, 1:4 (1906), 478–706 https://archive.org/details/grundbegriffede00hessgoog/page/n1/mode/2up
[21] F. Hausdorff, Grundzlige der Mengenlehre, Verlag von Veit Comp., Leipzig, 1914, 500 pp. https://archive.org/details/grundzgedermen00hausuoft
[22] A. Tarski, “On the calculus of relations”, Journal of Symbolic Logic, 6:3 (1941), 73–89 | DOI | MR
[23] R. Fraisse, Theory of Relations, Studies in Logic and the Foundations of Mathematics, Elsevier, 2011, 410 pp. https://readli.net/theory-of-relations/
[24] N. L. Biggs, Discrete Mathematics, Oxford University Press, Oxford, 2002, 425 pp. https://archive.org/details/discretemathemat00norm_0/mode/2up | Zbl
[25] B. M. Schein, “Relation algebras and function semigroups”, Semigroup Forum, 1:1 (1970), 1–62 | DOI | MR | Zbl
[26] N. Bruijn, P. Erdos, “A colour problem for infinite graphs and a problem in the theory of relations”, Proc. Nederl. Akad. Wetensch. Indag. Math. Ser. A, 54:5 (1951), 371–373 https://research.tue.nl/files/4237754/597497.pdf | DOI | Zbl
[27] R. L. Graham, D. E. Knuth, O. Patashnik, Concrete mathematics A foundation for computer science, Advanced Book Program, Addison-Wesley, 1989, 625 pp. https://notendur.hi.is/pgg/(ebook-pdf) - Mathematics - Concrete Mathematics.pdf | MR | Zbl
[28] V. P. Tsvetov, “Algebras of finitary relations”, CEUR Workshop Proceedings, 2416, 2019, 119–125 | DOI