Experimental technique for determining the evolution of the bending shape of thin substrate by the copper electrocrystallization in areas of complex shapes
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 25 (2019) no. 4, pp. 48-73 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The present paper is aimed of experimental technique of local incompatible deformations' identification in thin layers obtained as a result of electrocrystallization. The process of electrocrystallization is carried on thin substrates. Changes in time of form of these thin substrates are registered during the experiment. Identification of local incompatible deformations' parameters is carried out from the condition of the minimum deflection of experimentally detected displacements and displacements that were determined by theoretical relations. As such a relationship the solution of a boundary value problem for a layer by layer growing plate is used in the paper. Significant difference of suggested technique from known methods is that testing electrocrystallization is carried out in areas of various forms. It allows to provide analysis of the influence that corner points of deposition area's boundary have on incompatible deformations caused by electrochemical process.
Keywords: electrocrystallization, thin substrate, residual stresses, distortion of shape, elasticity, experimental identification, holographic interferometry.
Mots-clés : incompatible deformations
@article{VSGU_2019_25_4_a5,
     author = {P. S. Bychkov and S. A. Lychev and D. K. Bout},
     title = {Experimental technique for determining the evolution of the bending shape of thin substrate by the copper electrocrystallization in areas of complex shapes},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {48--73},
     year = {2019},
     volume = {25},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2019_25_4_a5/}
}
TY  - JOUR
AU  - P. S. Bychkov
AU  - S. A. Lychev
AU  - D. K. Bout
TI  - Experimental technique for determining the evolution of the bending shape of thin substrate by the copper electrocrystallization in areas of complex shapes
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2019
SP  - 48
EP  - 73
VL  - 25
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSGU_2019_25_4_a5/
LA  - ru
ID  - VSGU_2019_25_4_a5
ER  - 
%0 Journal Article
%A P. S. Bychkov
%A S. A. Lychev
%A D. K. Bout
%T Experimental technique for determining the evolution of the bending shape of thin substrate by the copper electrocrystallization in areas of complex shapes
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2019
%P 48-73
%V 25
%N 4
%U http://geodesic.mathdoc.fr/item/VSGU_2019_25_4_a5/
%G ru
%F VSGU_2019_25_4_a5
P. S. Bychkov; S. A. Lychev; D. K. Bout. Experimental technique for determining the evolution of the bending shape of thin substrate by the copper electrocrystallization in areas of complex shapes. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 25 (2019) no. 4, pp. 48-73. http://geodesic.mathdoc.fr/item/VSGU_2019_25_4_a5/

[1] Gamburg Yuliy D., Zangari G., Theory and practice of metal electrodeposition, Springer Science Business Media, New York, 2011 https://b-ok.cc/book/1234360/f760b6

[2] Fischer H., Elektrolytische Abscheidung und Elektrokristallisation von Metallen, Springer-Verlag, Berlin–Heidelberg, 1954 | DOI

[3] Bockris J.O'M., Razumney G. A., Fundamental aspects of electrocrystallization, Springer US, 1967 | DOI

[4] Freund L. B., Suresh S., Thin film materials: stress, defect formation and surface evolution, Cambridge University Press, 2004 https://b-ok.cc/book/438690/7306b4 | Zbl

[5] Vagramyan A. T., Petrova Yu.S., Physical and chemical properties of electrolytic deposition, Izd-vo AN SSSR, M., 1960, 206 pp. (in Russian)

[6] Gibson I., Rosen D., Stucker B., et al., Additive Manufacturing Technologies, Springer, Berlin, 2015 | DOI

[7] Blount B., Practical Electro-chemistry, A. Constable Company, Limited, New York, 1901 https://archive.org/details/practicalelectro00blourich

[8] Mills Edmund J., “On Electrostriction”, Proceedings of the Royal Society of London, 26 (1877), 504–512 https://archive.org/details/paper-doi-10_1098_rspl_1877_0070/mode/2up

[9] Stoney G. G., “The tension of metallic films deposited by electrolysis”, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 82(553) (1909), 172–175 | DOI

[10] Brenner A., Senderoff S., “Calculation of stress in electrodeposits from the curvature of a plated strip”, J. Res. Natl. Bur. Stand., 42 (1949), 105 https://archive.org/details/jresv42n2p105 | DOI

[11] Soderberg K. G., Graham A. K., “Stress in electrodeposits — its significance”, Metallurgia, 34 (1947), 74

[12] Barklie R. H.D., Davies H. I., “The effect of surface conditions and electrodeposited metal on the resistance of materials to repeated stresses”, Proc. Inst. Mech. Eng., 1930, 731 | DOI

[13] Lychev S. A., Manzhirov A. V., “The mathematical theory of growing bodies. Finite deformations”, Journal of Applied Mathematics and Mechanics, 77:4 (2013), 421–432 | DOI | MR | Zbl

[14] Sozio F., Yavari A., “Nonlinear mechanics of surface growth for cylindrical and spherical elastic bodies”, J. Mech. Phys. Solids, 98 (2017), 12–48 | DOI | MR

[15] Zurlo G., Truskinovsky L., “Printing Non-Euclidean Solids”, Phys. Rev. Lett., 2017 | DOI

[16] Lychev S., “Equilibrium equations for transversely accreted shells”, ZAMM — Journal of Applied Mathematics and Mechanics /Zeitschrift fur Angewandte Mathematik und Mechanik, 94:1–2 (2014), 118–129 | DOI | MR | Zbl

[17] Lychev S., Koifman K., “Nonlinear evolutionary problem for laminated inhomogeneous spherical shell”, Acta Mech., 230 (2019), 3989–4020 | DOI | MR | Zbl

[18] Arutyunyan N.Kh., Manzhirov A. V., Naumov V. E., Contact problems in mechanics of growing solids, Nauka, M., 1996, 176 pp. (in Russian) http://bookre.org/reader?file=789569 | MR

[19] Drozdov A., Viscoelastic Structures: Mechanics of Growth and Aging, Academic Press, San Diego, 1997, 596 pp. http://bookre.org/reader?file=789555&pg=1

[20] Metlov V. V., “On the buildup of inhomogeneous viscoelastic bodies at finite strains”, Journal of Applied Mathematics and Mathematics, 49:4 (1985), 637–647 (in Russian) | Zbl

[21] Trincher V. K., Calculation of stackable bodies, Izd-vo MGU, M., 1989, 154 pp. (in Russian)

[22] Southwell R. V., An introduction to the theory of elasticity for engineers and physicists, Oxford University Press, Oxford, 1941, 509 pp.

[23] Feng X., Huang Y., Rosakis A. J., “On the Stoney formula for a thin film/substrate system with nonuniform substrate thickness”, J. Appl. Mech., 74:6, Nov. (2007), 1276–1281 | DOI

[24] Freund L. B., Floro J. A., Chason E., “Extensions of the Stoney formula for substrate curvature to configurations with thin substrates or large deformations”, Applied Physics Letters, 74:14 (1999), 1987–1989 | DOI

[25] Janssen G. C., Abdalla M. M., Van Keulen F., Pujada B. R., Van Venrooy B., “Celebrating the 100th anniversary of the Stoney equation for film stress: Developments from polycrystalline steel strips to single crystal silicon wafers”, Thin Solid Films, 517:6 (2009), 1858–1867 | DOI

[26] Ciarlet P., Mathematical Elasticity, v. II, Theory of Plates, Elsevier Science B, 1997, lxi+497 pp. https://b-ok.cc/book/963731/2d0288 | MR | Zbl

[27] Klein F. et al., Encyklopadie der mathematischen Wissenschaften, Springer fachmedien wiesbaden, Leipzig, 1914, 874 pp. https://archive.org/details/encyklomath1202encyrich

[28] Aug. Foppl, Vorlesungen Uber Technische Mechannik, v. 5, B.G. Teubner, Leipzig, Germany, 1907, 132 pp.

[29] T. von Karman, Festigkeitsproblem im Maschinenbau, Vieweg+Teubner Verlag, Wiesbaden, 1910, 311–385

[30] Coman C. D., Bassom A. P., “On the mathematical structure of Eigen-deformations in a Föppl-von Kàrmàn Bifurcation system”, Journal of Elasticity, 131:2 (2018), 183–205 | DOI | MR | Zbl

[31] Janczewska J., “Description of the solution set of the von Kármán equations for a circular plate in a small neighbourhood of a simple bifurcation point”, Nonlinear Differential Equations and Applications NoDEA, 13:3 (2006), 337–348 | DOI | MR | Zbl

[32] Yu Q., Hang X., Shijun L., “Coiflets solutions for Föppl-von Kármán equations governing large deflection of a thin flat plate by a novel wavelet-homotopy approach”, Numerical Algorithms, 79:4 (2018), 993–1020 | DOI | MR | Zbl

[33] Whittaker E. T., Watson G. N., A Course of Modern Analysis, Cambridge University Press, Cambridge, 1962, 616 pp. https://archive.org/details/ACourseOfModernAnalysis | MR | Zbl

[34] Bout D., Bychkov P., Lychev S., “Theoretical and experimental study of the bending of a thin substrate during electrolytic deposition”, PNRPU Mechanics Bulletin, 2020 (in Russian) | DOI

[35] Lychev S., Bychkov P., Saifutdinov I., “Holographic Interferometry of Thin-walled Structure Distortion During the Stereolithography Process”, Procedia IUTAM, 23 (2017), 101–107 | DOI

[36] Bychkov P. S., “An experimental study of the deflection of a thickness growing spherical shell”, Modern problems of continuum mechanics, Proceedings of the XIX International Conference, 2018, 53–57 (in Russian)

[37] Collins M. C., Watterson C. E., “Surface-strain measurements on a hemispherical shell using holographic interferometry”, Experimental Mechanics, 15:4 (1975), 128–132 | DOI

[38] Vest C. M., Holographic Interferometry, John Wiley, New York, 1979 http://bookre.org/reader?file=730721

[39] Malacara D., Servin M., Malacara Z., Interferogram Analysis For Optical Testing, CRC Press, 2005, 568 pp. https://b-ok.cc/book/526483/6acefc

[40] Briers J. D., “The interpretation of holographic interferograms”, Opt Quant Electron., 8:6 (1976), 469–501 | DOI

[41] Bartels R., Beatty J., Barsky B., An introduction to splines for use in computer graphics and geometric modeling, Morgan Kaufmann, 1995, 485 pp. https://b-ok.cc/book/437372/4f1b59 | MR