Problems of differential and topological diagnostics. Part 3. The checking problem
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 25 (2019) no. 4, pp. 36-47 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Proposed work is the third in the cycle, therefore, we explain such notions as checking sphere, checking ellipsoid and checking tubes. The checking problem is stated and the algorithms for solving it are formulated. The criterion for a malfunction in a controlled system whose motion is described by ordinary differential equations is taken to be the attainment of a checking surface by the checking vector. We first propose the methods for solving the checking problems in which the checking surfaces are chosen in the form of a checking sphere, checking ellipsoid or checking tube. Then we consider the general techniques for constructing the checking surface by using the statistical testing method. We also give the extended statement of the checking problem. And we also prepare the material for the consideration of the problem of diagnostics.
Keywords: checking sphere, checking ellipsoid, checking tubes, extended statement of the checking problem.
@article{VSGU_2019_25_4_a4,
     author = {M. V. Shamolin},
     title = {Problems of differential and topological diagnostics. {Part~3.} {The} checking problem},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {36--47},
     year = {2019},
     volume = {25},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2019_25_4_a4/}
}
TY  - JOUR
AU  - M. V. Shamolin
TI  - Problems of differential and topological diagnostics. Part 3. The checking problem
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2019
SP  - 36
EP  - 47
VL  - 25
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSGU_2019_25_4_a4/
LA  - ru
ID  - VSGU_2019_25_4_a4
ER  - 
%0 Journal Article
%A M. V. Shamolin
%T Problems of differential and topological diagnostics. Part 3. The checking problem
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2019
%P 36-47
%V 25
%N 4
%U http://geodesic.mathdoc.fr/item/VSGU_2019_25_4_a4/
%G ru
%F VSGU_2019_25_4_a4
M. V. Shamolin. Problems of differential and topological diagnostics. Part 3. The checking problem. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 25 (2019) no. 4, pp. 36-47. http://geodesic.mathdoc.fr/item/VSGU_2019_25_4_a4/

[1] Shamolin M. V., “Problems of differential and topological diagnostics. Part 1. Motion equations and classification of malfunctions”, Vestnik of Samara University. Natural Science Series, 25:1 (2019), 32–43 (in Russian) | DOI | MR | Zbl

[2] Shamolin M. V., “Problems of differential and topological diagnostics. Part II. Problem of differential diagnostics”, Vestnik of Samara University. Natural Science Series, 25:3 (2019), 22–31 (in Russian) | DOI | MR

[3] Borisenok I. T., Shamolin M. V., “Resolving a problem of differential diagnostics”, Fundamental and Applied Mathematics, 5:3 (1999), 775–790 (in Russian) | MR | Zbl

[4] Shamolin M. V., Certain problems of differential and topological diagnostics, 2nd edition, revised and enlarged, Ekzamen, M., 2007 (in Russian)

[5] Shamolin M. V., “Foundations of Differential and Topological Diagnostics”, J. Math. Sci., 114:1 (2003), 976–1024 (in English) | DOI | MR | Zbl

[6] Parkhomenko P. P., Sagomonian E. S., Foundations of technical diagnostics, Energiya, M., 1981

[7] Mironovskiy L. A., “Functional diagnosis of dynamic systems”, Automation and Remote Control, 1980, no. 8, 96–121 (in Russian)

[8] Okunev Yu.M., Parusnikov N. A., Structural and algorithmic aspects of modeling for control problems, Izd-vo MGU, M., 1983 (in Russian)

[9] Chikin M. G., “Systems with phase restrictions”, Automation and Remote Control, 1987, no. 10, 38–46 (in Russian) | MR | Zbl

[10] Zhukov V. P., “Sufficient and necessary conditions for the asymptotic stability of nonlinear dynamical systems”, Automation and Remote Control, 55:3 (1994), 321–330 | MR | Zbl

[11] Zhukov V. P., “On the sufficient and necessary conditions for robustness of the nonlinear dynamic systems in terms of stability retention”, Automation and Remote Control, 69:1 (2008), 27–35 | DOI | MR | Zbl

[12] Zhukov V. P., “Reduction of Stability Study of Nonlinear Dynamic Systems by the Second Lyapunov Method”, Automation and Remote Control, 66:12 (2005), 1916–1928 | DOI | MR | Zbl

[13] Borisenok I. T., Shamolin M. V., “Solving the problem of differential diagnostics by the method of statistical tests”, Moscow University Mechanics Bulletin, 2001, no. 1, 29–31 (in Russian) | MR | Zbl

[14] Beck A., Teboulle M., “Mirror Descent and Nonlinear Projected Subgradient Methods for Convex Optimization”, Oper. Res. Lett., 31:3 (2003), 167–175 (in English) | DOI | MR | Zbl

[15] Ben-Tal A., Margalit T., Nemirovski A., “The Ordered Subsets Mirror Descent Optimization Method with Applications to Tomography”, SIAM J. Optim., 12:1 (2001), 79–108 (in English) https://pdfs.semanticscholar.org/e19f/7697c83e692d7a459b09c229d0faef3b31ea.pdf?_ga=2.188452072.1367780915.1591514604-1525477732.1586505106 | DOI | MR | Zbl

[16] Su W., Boyd S., Candes E., “A Differential Equation for Modeling Nesterov's Accelerated Gradient Method: Theory and Insights”, J. Machine Learning Res., 2016, no. 17(153), 1–43, arXiv: 1503.01243 | MR | Zbl

[17] Shamolin M. V., “Diagnostics of Gyro-Stabilized Platform, Included in the Aircraft Motion Control System”, Electronic Modeling, 33:3 (2011), 121–126 (in Russian)

[18] Shamolin M. V., “Diagnostics of Aircraft Motion in Planning Descent Mode”, Electronic Modeling, 32:5 (2010), 31–44 (in Russian)

[19] Fleming W. H., “Optimal Control of Partially Observable Diffusions”, SIAM J. Control, 6:2 (1968), 194–214 (in English) | DOI | MR | Zbl

[20] Choi D. H., Kim S. H., Sung D. K., “Energy-efficient Maneuvering and Communication of a Single UAV-based Relay”, IEEE Trans. Aerosp. Electron. Syst., 50:3 (2014), 2119–2326 (in English) | DOI

[21] Ho D.-T., Grotli E. I., Sujit P. B., Johansen T. A., Sousa J. B., “Optimization of Wireless Sensor Network and UAV Data Acquisition”, Journal of Intelligent and Robotic Systems, 78:1, April (2015), 159–179 (in English) | DOI

[22] Ceci C., Gerardi A., Tardelli P., “Existence of Optimal Controls for Partially Observed Jump Processes”, Acta Appl. Math., 74:2 (2002), 155–175 (in English) | DOI | MR | Zbl

[23] Rieder U., Winter J., “Optimal Control of Markovian Jump Processes with Partial Information and Applications to a Parallel Queueing Model”, Math. Meth. Oper. Res., 70 (2009), 567–596 (in English) | DOI | MR | Zbl

[24] Chiang M., Tan C. W., Hande P., Lan T., “Power control in wireless cellular networks”, Foundations and Trends in Networking, 2:4 (2008), 381–533 (in English) | DOI

[25] Altman E., Avrachenkov K., Menache I., Miller G., Prabhu B. J., Shwartz A., “Power control in wireless cellular networks”, IEEE Transactions Autom. Contr., 54:10 (2009), 2328–2340 (in English) | DOI | MR | Zbl

[26] Ober R. J., “Balanced Parameterization of Classes of Linear Systems”, SIAM J. Control Optimization, 29:6 (1991), 1251–1287 | DOI | MR | Zbl

[27] Ober R. J., McFarlane D., “Balanced Canonical Forms for Minimal Systems: A normalized Coprime Factor Approach”, Linear Algebra Appl., 122 (1989), 23–64 (in English) | DOI | MR | Zbl

[28] Antoulas A. C., Sorensen D. C., Zhou Y., “On the Decay Rate of Hankel Singular Values and Related Issues”, Systems Contr. Lett., 46 (2002), 323–342 (in English) | DOI | MR | Zbl

[29] Wilson D. A., “The Hankel Operator and its Induced Norms”, Int. J. Contr., 42 (1985), 65–70 (in English) | DOI | MR | Zbl

[30] Anderson B. D. O., Jury E. I., Mansour M., “Schwarz Matrix Properties for Continuous and Discrete Time Systems”, Int. J. Contr., 3 (1976), 1–16 (in English) | DOI | MR

[31] Peeters R., Hanzon B., Olivi M., “Canonical Lossless State-Space Systems: Staircase Forms and the Schur Algorithm”, Lin. Alg. Appl., 425:2–3 (2007), 404–433 (in English) | DOI | MR | Zbl

[32] Tang X., Wang S., “A Low Hardware Overhead Self-diagnosis Technique Using ReedSolomon Codes for Self-repairing Chips”, IEEE Trans. Comput., 59:10 (2010), 1309–1319 (in English) | DOI | MR | Zbl