@article{VSGU_2019_25_4_a2,
author = {V. A. Kirichek},
title = {Solvability of a nonlocal problem with integral conditions of the {II} kind for one-dimensional hyperbolic equation},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {22--28},
year = {2019},
volume = {25},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2019_25_4_a2/}
}
TY - JOUR AU - V. A. Kirichek TI - Solvability of a nonlocal problem with integral conditions of the II kind for one-dimensional hyperbolic equation JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2019 SP - 22 EP - 28 VL - 25 IS - 4 UR - http://geodesic.mathdoc.fr/item/VSGU_2019_25_4_a2/ LA - ru ID - VSGU_2019_25_4_a2 ER -
%0 Journal Article %A V. A. Kirichek %T Solvability of a nonlocal problem with integral conditions of the II kind for one-dimensional hyperbolic equation %J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ %D 2019 %P 22-28 %V 25 %N 4 %U http://geodesic.mathdoc.fr/item/VSGU_2019_25_4_a2/ %G ru %F VSGU_2019_25_4_a2
V. A. Kirichek. Solvability of a nonlocal problem with integral conditions of the II kind for one-dimensional hyperbolic equation. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 25 (2019) no. 4, pp. 22-28. http://geodesic.mathdoc.fr/item/VSGU_2019_25_4_a2/
[1] Cannon J. R., “The solution of the heat equation subject to the specification of energy”, Quart. Appl. Math., 21:2 (1963), 155–160 (in English) | DOI | MR
[2] Kamynin L. I., “A boundary value problem in the theory of heat conduction with a nonclassical boundary condition”, USSR Computational Mathematics and Mathematical Physics, 4:6 (1964), 33–59 | DOI | MR
[3] Pulkina L. S., “A nonclassical problem for a degenerate hyperbolic equation”, Soviet Mathematics (Izv. VUZ. Matematika), 35:11 (1991), 49–51 | MR
[4] Pul'kina L. S., “Certain nonlocal problem for a degenerate hyperbolic equation”, Mathematical Notes, 51:3 (1992), 286–290 | DOI | MR | Zbl
[5] Il'in V.A., Moiseev E. I., “Uniqueness of the solution of a mixed problem for the wave equation with nonlocal boundary conditions”, Differential Equations, 36:5 (2000), 728–733 | DOI | MR | Zbl
[6] Pulkina L. S., “A Mixed Problem with Integral Condition for the Hyperbolic Equation”, Mathematical Notes, 74:3 (2003), 411–421 | DOI | DOI | MR | Zbl
[7] Pulkina L. S., “Initial-boundary value problem with a nonlocal boundary condition for a multidimensional hyperbolic equation”, Differential Equations, 44:8 (2008), 1119–1125 | DOI | MR | Zbl
[8] Lazetic N. L., “On the classical solvability of the mixed problem for a second-order one-dimensional hyperbolic equation”, Differential Equations, 42:8 (2006), 1134–1139 (in Russian) | DOI | MR
[9] Pulkina L. S., Problems with nonclassical conditions for hyperbolic equatins, Izdatel'stvo “Samarskii universitet”, Samara, 2012, 194 pp. (in Russian)
[10] Kozhanov A. I., Pulkina L. S., “On the solvability of boundary value problems with a nonlocal boundary condition of integral form for multidimensional hyperbolic equations”, Differential Equations, 42:9 (2006), 1233–1246 | DOI | MR | MR | Zbl
[11] Pulkina L. S., “Nonlocal problems for hyperbolic equations with degenerate integral condition”, Electronic Journal of Differential Equations, 2016:193 (2016), 1–1 (in English) https://pdfs.semanticscholar.org/5550/c097496f428d827925bfb987497a291bee78.pdf?_ga=2.141811954.1367780915.1591514604-1525477732.1586505106 | Zbl
[12] Pulkina L. S., Kirichek V. A., “Solvability of a nonlocal problem for a hyperbolic equation with degenerate integral conditions”, J. Samara State Tech. Univ., Ser. Phys. Math. Sci., 23:2 (2019), 229–245 (in Russian) | DOI | Zbl
[13] Ladyzhenskaya O. A., Boundary problems of mathematical physics, Nauka, M., 1973, 407 pp. (in Russian) http://bookre.org/reader?file=442669 | MR