Solvability of a nonlocal problem with integral conditions of the II kind for one-dimensional hyperbolic equation
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 25 (2019) no. 4, pp. 22-28 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we consider a nonlocal problem with integral conditions of the II kind for one-dimensional hyperbolic equation. Nonlocal conditions of the second kind differ in type of non-integral terms, that may contain traces of required solution and traces of derivatives. This difference turns out to be significant for choosing a method for investigating the solvability of the problem. In this work we consider the case when nonintegral terms are traces of required solution on boundary of the domain. To investigate the solvability of the problem we use method of reduction to the boundary problem for loaded equation. This method allowed us to define a generalized solution, to obtaim apriori estimates and to prove existence of unique generalized solution of the given problem.
Keywords: hyperbolic equation, nonlocal problem, integral condition of the II kind, loaded equation, generalized solution.
@article{VSGU_2019_25_4_a2,
     author = {V. A. Kirichek},
     title = {Solvability of a nonlocal problem with integral conditions of the {II} kind for one-dimensional hyperbolic equation},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {22--28},
     year = {2019},
     volume = {25},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2019_25_4_a2/}
}
TY  - JOUR
AU  - V. A. Kirichek
TI  - Solvability of a nonlocal problem with integral conditions of the II kind for one-dimensional hyperbolic equation
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2019
SP  - 22
EP  - 28
VL  - 25
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSGU_2019_25_4_a2/
LA  - ru
ID  - VSGU_2019_25_4_a2
ER  - 
%0 Journal Article
%A V. A. Kirichek
%T Solvability of a nonlocal problem with integral conditions of the II kind for one-dimensional hyperbolic equation
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2019
%P 22-28
%V 25
%N 4
%U http://geodesic.mathdoc.fr/item/VSGU_2019_25_4_a2/
%G ru
%F VSGU_2019_25_4_a2
V. A. Kirichek. Solvability of a nonlocal problem with integral conditions of the II kind for one-dimensional hyperbolic equation. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 25 (2019) no. 4, pp. 22-28. http://geodesic.mathdoc.fr/item/VSGU_2019_25_4_a2/

[1] Cannon J. R., “The solution of the heat equation subject to the specification of energy”, Quart. Appl. Math., 21:2 (1963), 155–160 (in English) | DOI | MR

[2] Kamynin L. I., “A boundary value problem in the theory of heat conduction with a nonclassical boundary condition”, USSR Computational Mathematics and Mathematical Physics, 4:6 (1964), 33–59 | DOI | MR

[3] Pulkina L. S., “A nonclassical problem for a degenerate hyperbolic equation”, Soviet Mathematics (Izv. VUZ. Matematika), 35:11 (1991), 49–51 | MR

[4] Pul'kina L. S., “Certain nonlocal problem for a degenerate hyperbolic equation”, Mathematical Notes, 51:3 (1992), 286–290 | DOI | MR | Zbl

[5] Il'in V.A., Moiseev E. I., “Uniqueness of the solution of a mixed problem for the wave equation with nonlocal boundary conditions”, Differential Equations, 36:5 (2000), 728–733 | DOI | MR | Zbl

[6] Pulkina L. S., “A Mixed Problem with Integral Condition for the Hyperbolic Equation”, Mathematical Notes, 74:3 (2003), 411–421 | DOI | DOI | MR | Zbl

[7] Pulkina L. S., “Initial-boundary value problem with a nonlocal boundary condition for a multidimensional hyperbolic equation”, Differential Equations, 44:8 (2008), 1119–1125 | DOI | MR | Zbl

[8] Lazetic N. L., “On the classical solvability of the mixed problem for a second-order one-dimensional hyperbolic equation”, Differential Equations, 42:8 (2006), 1134–1139 (in Russian) | DOI | MR

[9] Pulkina L. S., Problems with nonclassical conditions for hyperbolic equatins, Izdatel'stvo “Samarskii universitet”, Samara, 2012, 194 pp. (in Russian)

[10] Kozhanov A. I., Pulkina L. S., “On the solvability of boundary value problems with a nonlocal boundary condition of integral form for multidimensional hyperbolic equations”, Differential Equations, 42:9 (2006), 1233–1246 | DOI | MR | MR | Zbl

[11] Pulkina L. S., “Nonlocal problems for hyperbolic equations with degenerate integral condition”, Electronic Journal of Differential Equations, 2016:193 (2016), 1–1 (in English) https://pdfs.semanticscholar.org/5550/c097496f428d827925bfb987497a291bee78.pdf?_ga=2.141811954.1367780915.1591514604-1525477732.1586505106 | Zbl

[12] Pulkina L. S., Kirichek V. A., “Solvability of a nonlocal problem for a hyperbolic equation with degenerate integral conditions”, J. Samara State Tech. Univ., Ser. Phys. Math. Sci., 23:2 (2019), 229–245 (in Russian) | DOI | Zbl

[13] Ladyzhenskaya O. A., Boundary problems of mathematical physics, Nauka, M., 1973, 407 pp. (in Russian) http://bookre.org/reader?file=442669 | MR