Generalizations to some Integro-differential equations embodying powers of a differential operator
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 25 (2019) no. 4, pp. 14-21 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The abstract equations containing the operators of the second, third and fourth degree are investigated in this work. The necessary conditions for the solvability of the abstract equations, containing the operators of the second and fourth degree, are proved without using linear independence of the vectors included in these equations. Previous authors have essentially used the linear independence of the vectors to prove the necessary solvability condition. The present paper also gives the correctness criterion for the abstract equation, containing the operators of the third degree with arbitrary vectors, and its exact solution in terms of these vectors in a Banach space. The theory presented here, can be useful for investigation of Fredholm integro-differential equations embodying powers of an ordinary differential operator or a partial differential operator.
Keywords: Fredholm Integro-differential equations, initial value problems, boundary value problems, differential operators, power operators, composite products
Mots-clés : exact solutions.
@article{VSGU_2019_25_4_a1,
     author = {M. M. Baiburin},
     title = {Generalizations to some {Integro-differential} equations embodying powers of a differential operator},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {14--21},
     year = {2019},
     volume = {25},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2019_25_4_a1/}
}
TY  - JOUR
AU  - M. M. Baiburin
TI  - Generalizations to some Integro-differential equations embodying powers of a differential operator
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2019
SP  - 14
EP  - 21
VL  - 25
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSGU_2019_25_4_a1/
LA  - en
ID  - VSGU_2019_25_4_a1
ER  - 
%0 Journal Article
%A M. M. Baiburin
%T Generalizations to some Integro-differential equations embodying powers of a differential operator
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2019
%P 14-21
%V 25
%N 4
%U http://geodesic.mathdoc.fr/item/VSGU_2019_25_4_a1/
%G en
%F VSGU_2019_25_4_a1
M. M. Baiburin. Generalizations to some Integro-differential equations embodying powers of a differential operator. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 25 (2019) no. 4, pp. 14-21. http://geodesic.mathdoc.fr/item/VSGU_2019_25_4_a1/

[1] Apreutesei N., Ducrot A., Volpert V., “Travelling waves for integro-differential equations in population dynamics”, Discrete and Continuous Dynamical Systems, Ser. B, 11:3 (2009), 541–561 (in English) | DOI | MR | Zbl

[2] Baiburin M. M., Providas E., “Exact Solution to Systems of Linear First-Order Integro-Differential Equations with Multipoint and Integral Conditions”, Mathematical Analysis and Applications, Springer Optimization and Its Applications book series, 154, eds. Rassias T., Pardalos P., 2019, 1–16 (in English) | DOI | Zbl

[3] Bloom F., Ill-Posed Problems for Integrodifferential Equations in Mechanics and Electromagnetic Theory, SIAM Studies in Applied Mathematics, Philadelphia, 1981, 231 pp. (in English) http://bookre.org/reader?file=725637 | Zbl

[4] Cushing J. M., Integrodifferential equations and delay models in population dynamics, Springer-Verlag, Berlin–Heidelberg, 1977 (in English) | DOI | MR | Zbl

[5] Medlock J., Kot M., “Spreading disease: integro-differential equations old and new”, Mathematical Biosciences, 184, August (2003), 201–222 (in English) | DOI | MR | Zbl

[6] Oinarov R. O., Parasidi I. N., “Correct extensions of operators with finite defect in Banach spases”, Izvestiya Akademii Nauk Kazakhskoi SSR, 5 (1988), 42–46 (in Russian) | MR | Zbl

[7] Parasidis I. N., Providas E., “Integro-differential equations embodying powers of a differential operator”, Vestnik of Samara University. Natural Science Series, 25:3 (2019), 13–21 (in English) | DOI | MR

[8] Parasidis I. N., Providas E., “On the Exact Solution of Nonlinear Integro-Differential Equations”, Applications of Nonlinear Analysis, 2018, 591–609 (in English) | DOI | MR | Zbl

[9] Parasidis I. N., Tsekrekos P. C., Lokkas Th. G., “Correct and self-adjoint problems for biquadratic operators”, Journal of Mathematical Sciences, 166:2 (2010), 420–427 (in English) | DOI | MR

[10] Parasidis I. N., Providas E., “Extension Operator Method for the Exact Solution of Integro-Differential Equations”, Contributions in Mathematics and Engineering, eds. Pardalos P., Rassias T., Springer, Cham, 2016, 473–496 (in English) | DOI | MR | Zbl

[11] Polyanin A. D., Zhurov A. I., “Exact solutions to some classes of nonlinear integral, integro-functional, and integro-differential equations”, Doklady Mathematics, 77 (2008), 315–319 (in English) | DOI | MR

[12] Sachs E. W., Strauss A. K., “Efficient solution of a partial integro-differential equation in finance”, Applied Numerical Mathematics, 58 (2008), 1687–1703 (in English) | DOI | MR | Zbl

[13] Shishkin G. A., Linear Fredholm integro-differential equations, Buryat State University, Ulan-Ude, 2007 (in Russian)

[14] Shivanian E., “Analysis of meshless local radial point interpolation (MLRPI) on a nonlinear partial integro-differential equation arising in population dynamics”, Engineering Analysis with Boundary Elements, 37 (2003), 1693–1702 (in English) | DOI | MR

[15] Vassiliev N. N., Parasidis I. N., Providas E., “Exact solution method for Fredholm integro-differential equations with multipoint and integral boundary conditions. Part 1. Extention method”, Information and Control Systems, 2018, no. 6, 14–23 (in English) | DOI | MR

[16] Vassiliev N. N., Parasidis I. N., Providas E., “Exact solution method for Fredholm integro-differential equations with multipoint and integral boundary conditions. Part 2. Decomposition-extension method for squared operators”, Information and Control Systems, 2019, no. 2, 2–9 (in English) | DOI | MR

[17] Wazwaz A. M., Linear and nonlinear integral equations, methods and applications, Springer, Berlin–Heidelberg, 2011 (in English) | DOI | MR | Zbl