Correctness of a mixed problem for degenerate three-dimensional hyperbolic-parabolic equations
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 25 (2019) no. 4, pp. 7-13 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In mathematical modeling of electromagnetic fields in space, the nature of electromagnetic process is determined by the properties of the medium. If the medium is non-conducting, we obtain degenerate three-dimensional hyperbolic equations. If the medium has a high conductivity, then we come to degenerate three-dimensional parabolic equations. Consequently, the analysis of electromagnetic fields in complex media (for example, if the medium's conductivity changes) is reduced to degenerate three-dimensional hyperbolic-parabolic equations. The mixed problem for multidimensional hyperbolic equations is well studied and has been previously considered in the works of various authors. In the articles of Professor S.A. Aldashev, the unique solvability of the mixed problem for degenerate multidimensional hyperbolic equations is proved. It is known that mixed problems for multidimensional hyperbolic-parabolic equations have not been studied much. The paper finds a new class of degenerate three-dimensional hyperbolic-parabolic equations for which the mixed problem has a unique solution and gives an explicit representation of its classical solution.
Keywords: correctness, mixed problem, cylindrical domain, degeneracy, hyperbolic-parabolic equation, Bessel function.
@article{VSGU_2019_25_4_a0,
     author = {S. A. Aldashev and Z. N. Kanapyanova},
     title = {Correctness of a mixed problem for degenerate three-dimensional hyperbolic-parabolic equations},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {7--13},
     year = {2019},
     volume = {25},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2019_25_4_a0/}
}
TY  - JOUR
AU  - S. A. Aldashev
AU  - Z. N. Kanapyanova
TI  - Correctness of a mixed problem for degenerate three-dimensional hyperbolic-parabolic equations
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2019
SP  - 7
EP  - 13
VL  - 25
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSGU_2019_25_4_a0/
LA  - ru
ID  - VSGU_2019_25_4_a0
ER  - 
%0 Journal Article
%A S. A. Aldashev
%A Z. N. Kanapyanova
%T Correctness of a mixed problem for degenerate three-dimensional hyperbolic-parabolic equations
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2019
%P 7-13
%V 25
%N 4
%U http://geodesic.mathdoc.fr/item/VSGU_2019_25_4_a0/
%G ru
%F VSGU_2019_25_4_a0
S. A. Aldashev; Z. N. Kanapyanova. Correctness of a mixed problem for degenerate three-dimensional hyperbolic-parabolic equations. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 25 (2019) no. 4, pp. 7-13. http://geodesic.mathdoc.fr/item/VSGU_2019_25_4_a0/

[1] Ladyzhenskaya O. A., Mixed problem for hyperbolic equation, Gostekhizdat, M., 1953, 279 pp. (in Russian)

[2] Ladyzhenskaya O. A., Boundary value problems of mathematical physics, Nauka, M., 1973, 407 pp. (in Russian)

[3] Krasnov M. L., “Mixed boundary value problems for degenerate linear hyperbolic second order differential equations”, Sbornik: Mathematics, 49(91) (1959), 29–84 (in Russian) | Zbl

[4] Baranovskii F. T., “Mixed problem for a linear second-order hyperbolic equation degenerating in the initial plane”, Uchenye zapiski Leningr. ped. instituta, 183 (1958), 23–58 (in Russian)

[5] Aldashev S. A., “Well-posedness of the mixed problem for degenerate multi-dimensional hyperbolic equations”, Modern Problems of Mathematical Modeling, Computational Methods and Information Technologies, Materials of the international conferences, Kyiv National University named after T. Shevchenko, Kyiv, 2018, 14–15 | MR

[6] Aldashev S. A., “Correctness of a mixed problem in a cylindrical domain for a class of multidimensional hyperbolic-parabolic equations”, Ukrainian Mathematical Journal, 72:2 (2020), 280–288 (in Russian) | Zbl

[7] Kolmogorov A. N., Fomin S. V., Elements of the theory of functions and functional analysis, Nauka, M., 1976, 543 pp. (in Russian) | MR

[8] Aldashev S. A., “Correctness of the Dirichlet problem for degenerate multidimensional hyperbolic-parabolic equations”, Research Bulletin of Belgorod State University. Mathematics. Physics, 27(248):45 (2016), 16–25 (in Russian)

[9] Aldashev S. A., Kanapyanova Z. N., “Correctness of mixed problems for one class of degenerate three-dimensional hyperbolic equations”, Non-classical equations of mathematical physics and their applications, Abstracts of the Uzbek-Russian scientific conference, Tashkent, 2019, 96 pp. (in Russian)

[10] Smirnov V. I., Course of higher mathematics, Part 2, v. 4, Nauka, M., 1981, 550 pp. (in Russian) | MR

[11] Friedman A., Partial differential equations of parabolic type, Mir, M., 1968, 527 pp. (in Russian)