Veering of Saffman lift forсe at flow past sphere without separation
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 25 (2019) no. 3, pp. 83-92 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article shows the characteristics of a sphere placed in a linear shear flow. The Reynolds number ranges from 0.1 to 10, and the dimensionless velocity gradient is 0.1. The coefficients of drag and lift forces do not depend on the change in the distance to the boundaries of the computational domain and the reduction of cell sizes. The results are obtained in the Ansys Fluent package. For small values of the problem parameters, the solution results have a good agreement with the known results. The results confirm the classical view of the Saffman lift force: if the relative velocity is positive, there is a lift force toward the higher velocity of the continuous phase. On the other hand, if the relative velocity is negative the lift force is toward the lower velocity of the continuous phase. Between Reynolds numbers from 4 to 5, the Saffman lift force reverses direction. This results for the first time confirms McLaughlin assumption about negative Saffman lift force.
Keywords: linear shear flow, sphere, Ansys Fluent.
Mots-clés : Saffman lift force
@article{VSGU_2019_25_3_a6,
     author = {Yu. A. Kryukov},
     title = {Veering of {Saffman} lift for{\cyrs}e at flow past sphere without separation},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {83--92},
     year = {2019},
     volume = {25},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2019_25_3_a6/}
}
TY  - JOUR
AU  - Yu. A. Kryukov
TI  - Veering of Saffman lift forсe at flow past sphere without separation
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2019
SP  - 83
EP  - 92
VL  - 25
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSGU_2019_25_3_a6/
LA  - ru
ID  - VSGU_2019_25_3_a6
ER  - 
%0 Journal Article
%A Yu. A. Kryukov
%T Veering of Saffman lift forсe at flow past sphere without separation
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2019
%P 83-92
%V 25
%N 3
%U http://geodesic.mathdoc.fr/item/VSGU_2019_25_3_a6/
%G ru
%F VSGU_2019_25_3_a6
Yu. A. Kryukov. Veering of Saffman lift forсe at flow past sphere without separation. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 25 (2019) no. 3, pp. 83-92. http://geodesic.mathdoc.fr/item/VSGU_2019_25_3_a6/

[1] Saffman P. G., “The lift on a small sphere in a slow shear flow”, J. Fluid Mech., 22:2 (1965), 385–400 (in English) | DOI | Zbl

[2] Saffman P. G., “Corrigendum to “The lift on a small sphere in a slow shear flow””, J. Fluid Mech., 31:3 (1968), 624–624 (in English) | DOI

[3] Rybdylova O. D., Transverse migration and focusing of inertial impurity in shear flows, Candidate's of Physical and Mathematical Sciences thesis, Moskovskii gosudarstvennyi universitet im. M.V. Lomonosova, M., 2012 (in Russian)

[4] R. Kurose et al., “Effects of outflow from the surface of a sphere on drag, shear lift and scalar diffusion”, Phisics of fluids, 15:8 (2003), 2338–2351 (in English) | DOI

[5] McLaughlin J. B., “Inertial migration of small sphere in linear shear flows”, J. Fluid Mech., 224 (1991), 261–274 (in English) | DOI | Zbl

[6] Asmolov E. S., Transverse migration of small spherical particles in shear and unsteady flows, Doctoral of Physical and Mathematical Sciences thesis, Tsentral'nyi aerogidrodinamicheskii institut im. prof. N.E. Zhukovskogo, M., 2015 (in Russian)

[7] Cherukat P., McLaughlin J. B., Graham A. L., “The inertial lift on a rigid sphere translating in a linear shear flow field”, Int. J. Multiphase Flow, 20:2 (1994), 339–353 (in English) | DOI | Zbl

[8] Cherukat P., McLaughlin J. B., Dandy D. S., “A computational study of the inertial lift on a sphere in a linear shear flow field”, Int. J. Multiphase Flow, 25 (1999), 15–33 (in English) | DOI | Zbl

[9] Dandy D. S., Dwye H. A., “A sphere in shear flow at finite Reynolds number: effect of shear on particle lift, drag, and heat transfer”, J. Fluid Mech., 216 (1990), 381–410 (in English) | DOI

[10] Mei R., “An approximate expression for the shear lift force on a spherical particle at finite Reynolds number”, Int. J. Multiphase Flow, 18:1 (1992), 145–147 (in English) | DOI | MR | Zbl

[11] Kurose R., Komori S., “Drag and lift forces on a rotating sphere in a linear shear flow”, J. Fluid Mech., 384 (1999), 183–206 (in English) | DOI | MR | Zbl

[12] ANSYS ICEM CFD Tutorial Manual, (in English) http://www.pdfdrive.com/ansys-icem-cfd-tutorial-manualpdf-d16523808.html

[13] ANSYS FLUENT Users Guide, (in English) http://www.pdfdrive.com/ansys-fluent-users-guide-portal-de-documentacion-de-software-d13336249.html

[14] Loitsyansky L. G., Fluid and gas mechanics, Nauka, M., 1987, 677 pp.