Studying the crack distribution by the molecular dynamics method in a copper plate
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 25 (2019) no. 3, pp. 39-61 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using the method of molecular dynamics, the process of crack propagation in a single-crystal copper plate with a crack is simulated under the action of mixed loading corresponding to normal separation and transverse shear. A comprehensive study of the influence of geometric characteristics (model dimensions, crack length), temperature, strain rate and loading mixing parameter on the plate strength, crack growth and direction was carried out. The angles of propagation of a central crack in a copper plate are determined using the molecular dynamics method.
Keywords: molecular dynamics simulation, crack propagation, mixed-mode loading, fracture mechanic, crack propagation angle.
@article{VSGU_2019_25_3_a4,
     author = {O. N. Belova and L. V. Stepanova},
     title = {Studying the crack distribution by the molecular dynamics method in a copper plate},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {39--61},
     year = {2019},
     volume = {25},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2019_25_3_a4/}
}
TY  - JOUR
AU  - O. N. Belova
AU  - L. V. Stepanova
TI  - Studying the crack distribution by the molecular dynamics method in a copper plate
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2019
SP  - 39
EP  - 61
VL  - 25
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSGU_2019_25_3_a4/
LA  - ru
ID  - VSGU_2019_25_3_a4
ER  - 
%0 Journal Article
%A O. N. Belova
%A L. V. Stepanova
%T Studying the crack distribution by the molecular dynamics method in a copper plate
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2019
%P 39-61
%V 25
%N 3
%U http://geodesic.mathdoc.fr/item/VSGU_2019_25_3_a4/
%G ru
%F VSGU_2019_25_3_a4
O. N. Belova; L. V. Stepanova. Studying the crack distribution by the molecular dynamics method in a copper plate. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 25 (2019) no. 3, pp. 39-61. http://geodesic.mathdoc.fr/item/VSGU_2019_25_3_a4/

[1] Chaplygin Ju.A., Nanotechnology in electronics-3.1, Tekhnosfera, M., 2016, 480 pp. (in Russian)

[2] Griffith A. A., “The phenomenon of rupture and flow in solids”, Phil. Trans. Roy., 221 (1921), 163–198 (in English) | DOI

[3] Westergaard H. M., “Bearing pressures on cracks”, ASTM Trans. J. Appl. Mech., 6 (1939), A49–A53 (in English)

[4] Sneddon I. N., “The distribution of stress in the neighborhood of a crack in an elastic solid”, Proc. Roy. Soc. Ser. A, 187 (1946), 229–260 (in English) | DOI | MR

[5] Irwin G. R., “Fracture dynamics”, Fracturing Metals, American Society of Metals, Cleveland, 1946, 147–166 (in English)

[6] Orowan E., “Energy criteria of fracture”, Weld. Res. Suppl., 20 (1955), 1575 (in English)

[7] S. Chandra et al., “Molecular dynamics simulations of crack growth behavior in Al in the presence of vacancies”, Computational materials Science, 117 (2016), 518–526 (in English) | DOI

[8] Morandi M., Farrahi G. H., Chamani M., “Effect of microstructure on crack behavior in nanocrystalline nickel using molecular dynamics simulation”, Theoretical and Applied fracture Mechanics, 104 (2019), 102390 pp. (in English) | DOI

[9] Te-Hua Fang, Chien-Yu Shen, Yu-Cheng Fan, Win-Jin Chang, “Fracture characteristics of silicene nanosheet with a crack under tension estimated using molecular dynamics simulation”, Superlattice and Microstructures, 129 (2019), 124–129 (in English) | DOI

[10] Jinchun Yao, Yuxuan Xia, Shuhong Dong, Peishi Yu, Jun-Hua Zhao, “Finite element analysis and molecular dynamics simulations of nanoscale crack-hole interactions in chiral graphene nanoribbons”, Engineering Fracture Mechanics, 218 (2019), 106571 (in English) | DOI

[11] Sanjib C. Chowdhury, Ethan Wise, Raja Ganesh, John W. Gillespie Jr., “Effects of surface crack on the mechanical properties of Silica: A molecular dynamics simulation study”, Engineering Fracture Mechanics, 207 (2019), 99–108 (in English) | DOI

[12] Naiyer Razmara, Roghayeh Mohammdzadeh, “Effect of nitrogen content on the crack growth behavior in the Fe-N alloy at high temperatures via molecular dynamics simulations”, Theoretical and Applied fracture Mechanics, 97 (2018), 30–37 (in English) | DOI

[13] Wei Fang, Hongxian Xie, Fuxing Yin, Jia Li, Dil Faraz Khan, Oian Fang, “Molecular dynamics simulation of grain boundary geometry on crack propagation of bi-crystal aluminum”, Materials Science and Engineering, 666 (2016), 314–319 (in English) | DOI

[14] Yanqiu Zhang, Shuyong Jiang, Xiaoming Zhu, Yanan Zhao, “A molecular dynamics study of intercrystalline crack propagation in nano-nickel bicrystal films with (0 1 0) twist boundary”, Engineering Fracture Mechanics. Part A, 168 (2016), 147–159 (in English) | DOI

[15] Yanqiu Zhang, Shuyong Jiang, Xiaoming Zhu, Yanan Zhao, “Influence of twist angle on crack propagation of nanoscale bicrystal nickel film based on molecular dynamics simulation”, Physica E: Low-dimensional Systems and Nanostructures, 87 (2017), 281–294 (in English) | DOI

[16] Freitas R., Asta M., Bulatov V., “Quantum effects on dislocation motion from ring-polymer molecular dynamics”, Computational Materials, 4 (2018), 55 (in English) | DOI

[17] Nishimura K., Miyazaki N., “Molecular dynamics simulation of crack growth under cyclic loading”, Computational Materials Science, 31 (2004), 269–278 (in English) | DOI

[18] Nishimura K., Miyazaki N., “Molecular dynamics simulation of crack propagation in polycrystalline material”, CMES, 2 (2001), 143–154 | DOI

[19] Bose S. K., Kudrnovsky J., Drchal V., Turek I., “Pressure dependence of Curie temperature and resistivity in complex Heusler alloys”, Physical Review, 84:17 (2011), 174422 (in English) | DOI

[20] Belova O. N., Stepanova L. V., “Estimation of crack propagation direction angle under mixed mode loading in linear elastic isotropic materials by generalized fracture mechanics criteria and atomistic modeling (molecular dynamics method)”, Journal of Physics: Conference Series, 1096 (2018), 012060 (in English) | DOI

[21] Stepanova L. V., Bronnikov S. A., Belova O. N., “Estimation of crack propagation direction angle under mixed — mode loading (Mode I and Mode II): generalized fracture mechanics criteria and atomistic modeling (molecular dynamics method)”, PNRPU Mechanics Bulletin, 4 (2017), 189–213 (in Russian) | DOI

[22] Volegov P. S., Gerasimov R. M., Davletschin R. P., “Models of molecular dynamics: a review of EAM potentials. Part 1: Potentials for single-component systems”, PNRPU Mechanics Bulletin, 4 (2017), 214–237 (in Russian) | DOI

[23] Verlet L., “Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules”, Phys. Rev., 159 (1967), 98 (in English) | DOI

[24] Verlet L., “Computer “experiments” on classical fluids. II. Equilibrium correlation functions”, Phys. Rev., 165 (1967), 201 (in English) | DOI

[25] Feynman R., Leighton R., Sands M., Feynman lectures on physics, v. 1, Mir, M., 1967

[26] Rahman A., “Correlations in the motion of atoms in liquid argon”, Phys. Rev., 136 (1964), A405 (in English) | DOI

[27] LAMMPS Molecular Dynamics Simulator, (in English) http://lammps.sandia.gov/

[28] Interatomic Potentials Repository, (in English) https://www.ctcms.nist.gov/potentials/

[29] Lee J. G., Computational materials science: an introduction, Second edition, CRC Press, Taylor Francis, Boca Raton, 2017 (in English)

[30] Open Visualization Tool, (in English) https://www.ovito.org/