Problems of differential and topological diagnostics. Part II. Problem of differential diagnostics
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 25 (2019) no. 3, pp. 22-32 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Proposed work is the second in the cycle, therefore, we present the classification of malfunctions and introduce the concept of reference malfunctions that can occur in the control system of the object and in the neighborhoods of these malfunctions. The simplest possible approaches to mathematical modeling of malfunctions and their neighborhoods are formulated, and the problem of nondegeneracy of reference malfunctions is discussed in detail. The concept of diagnostic space is introduced, and its mathematical structure is defined. We also prepare the material for the consideration of the problem of differential diagnostics.
Keywords: classification of malfunctions, neighborhoods of these malfunctions, diagnostic space, problem of differential diagnostics.
@article{VSGU_2019_25_3_a2,
     author = {M. V. Shamolin},
     title = {Problems of differential and topological diagnostics. {Part~II.} {Problem} of differential diagnostics},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {22--32},
     year = {2019},
     volume = {25},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2019_25_3_a2/}
}
TY  - JOUR
AU  - M. V. Shamolin
TI  - Problems of differential and topological diagnostics. Part II. Problem of differential diagnostics
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2019
SP  - 22
EP  - 32
VL  - 25
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSGU_2019_25_3_a2/
LA  - ru
ID  - VSGU_2019_25_3_a2
ER  - 
%0 Journal Article
%A M. V. Shamolin
%T Problems of differential and topological diagnostics. Part II. Problem of differential diagnostics
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2019
%P 22-32
%V 25
%N 3
%U http://geodesic.mathdoc.fr/item/VSGU_2019_25_3_a2/
%G ru
%F VSGU_2019_25_3_a2
M. V. Shamolin. Problems of differential and topological diagnostics. Part II. Problem of differential diagnostics. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 25 (2019) no. 3, pp. 22-32. http://geodesic.mathdoc.fr/item/VSGU_2019_25_3_a2/

[1] Shamolin M. V., “Problems of differential and topological diagnostics. Part 1. Motion equations and classification of malfunctions”, Vestnik of Samara University. Natural Science Series, 25:1 (2019), 32–43 | DOI | MR | Zbl

[2] Borisenok I. T., Shamolin M. V., “Resolving a problem of differential diagnostics”, Fundamental and Applied Mathematics, 5:3 (1999), 775–790 (in Russian) | MR | Zbl

[3] Shamolin M. V., Certain Problems of Differential and Topological Diagnostics, 2nd edition, revised and enlarged, Ekzamen, M., 2007 (in Russian)

[4] Shamolin M. V., “Foundations of Differential and Topological Diagnostics”, J. Math. Sci., 114:1 (2003), 976–1024 (in English) | DOI | MR | Zbl

[5] Parkhomenko P. P., Sagomonian E. S., Foundations of Technical Diagnostics, Energiya, M., 1981 (in Russian)

[6] Mironovskii L. A., “Functional Diagnosing of Dynamical Systems”, Automation and Remote Control, 1980, no. 8, 96–121 (in Russian)

[7] Okunev Yu.M., Parusnikov N. A., Structural and Algorithmic Aspects of Modeling for Control Problems, Izd-vo MGU, M., 1983 (in Russian)

[8] Chikin M. G., “Phase-Constrained Systems”, Automation and Remote Control, 1987, no. 10, 38–46 (in Russian) | MR | Zbl

[9] Zhukov V. P., “On Sufficient and Necessary Conditions for the Asymptotic Stability of Nonlinear Dynamical Systems”, Automation and Remote Control, 1994, no. 3, 24–36 (in Russian) | Zbl

[10] Zhukov V. P., “On the Sufficient and Necessary Conditions for Robustness of the Nonlinear Dynamic Systems in Terms of Stability Retention”, Automation and Remote Control, 69:1 (2008), 27–35 (in English) | DOI | MR | Zbl

[11] Zhukov V. P., “Reduction of Stability Study of Nonlinear Dynamic Systems by the Second Lyapunov Method”, Automation and Remote Control, 66:12 (2005), 1916–1928 (in English) | DOI | MR | Zbl

[12] Borisenok I. T., Shamolin M. V., “Solving the problem of differential diagnostics by the method of statistical tests”, Moscow University Mechanics Bulletin, 2001, no. 1, 29–31 (in Russian) | MR | Zbl

[13] Beck A., Teboulle M., “Mirror Descent and Nonlinear Projected Subgradient Methods for Convex Optimization”, Oper. Res. Lett., 31:3 (2003), 167–175 (in English) https://web.iem.technion.ac.il/images/user-files/becka/papers/3.pdf | DOI | MR | Zbl

[14] Ben-Tal A., Margalit T., Nemirovski A., “The Ordered Subsets Mirror Descent Optimization Method with Applications to Tomography”, SIAM J. Optim., 12:1 (2001), 79–108 (in English) | DOI | MR | Zbl

[15] Su W., Boyd S., Candes E., “A Differential Equation for Modeling Nesterov's Accelerated Gradient Method: Theory and Insights”, J. Machine Learning Res., 2016, no. 17(153), 1–43 (in English) https://www.researchgate.net/publication/311221666_A_differential_equation_for_modeling_Nesterovs_accelerated_gradient_method_Theory_and_insights'>https://www.researchgate.net/publication/311221666_A_differential_equation_for_modeling_Nesterov's_accelerated_gradient_method_Theory_and_insights

[16] Shamolin M. V., “Diagnostics of Gyro-Stabilized Platform, Included in the Aircraft Motion Control System”, Electronic Modeling, 33:3 (2011), 121–126 (in Russian)

[17] Shamolin M. V., “Diagnostics of Aircraft Motion in Planning Descent Mode”, Electronic Modeling, 32:5 (2010), 31–44 (in Russian)

[18] Fleming W. H., “Optimal Control of Partially Observable Diffusions”, SIAM J. Control., 6:2 (1968), 194–214 (in English) | DOI | MR | Zbl

[19] Choi D. H., Kim S. H., Sung D. K., “Energy-efficient Maneuvering and Communication of a Single UAV-based Relay”, IEEE Trans. Aerosp. Electron. Syst., 50:3 (2014), 2119–2326 (in English) | DOI

[20] Ho D.-T., Grotli E. I., Sujit P. B., Johansen T. A., Sousa J. B., “Optimization of Wireless Sensor Network and UAV Data Acquisition”, J. Intelligent Robot. Syst., 78:1 (2015), 159–179 (in English) | DOI

[21] Ceci C., Gerardi A., Tardelli P., “Existence of Optimal Controls for Partially Observed Jump Processes”, Acta Appl. Math., 74:2 (2002), 155–175 (in English) | DOI | MR | Zbl

[22] Rieder U., Winter J., “Optimal Control of Markovian Jump Processes with Partial Information and Applications to a Parallel Queueing Model”, Math. Meth. Oper. Res., 70 (2009), 567–596 (in English) | DOI | MR | Zbl

[23] Chiang M., Tan C. W., Hande P., Lan T., “Power control in wireless cellular networks”, Foundations and Trends in Networking, 2:4 (2008), 381–533 (in English) https://www.princeton.edu/c̃hiangm/pc.pdf | DOI

[24] Altman E., Avrachenkov K., Menache I., Miller G., Prabhu B. J., Shwartz A., “Power control in wireless cellular networks”, IEEE Trans. Autom. Contr., 54:10 (2009), 2328–2340 (in English) | DOI | MR | Zbl

[25] Ober R. J., “Balanced Parameterization of Classes of Linear Systems”, SIAM J. Control Optimization, 29:6 (1991), 1251–1287 (in English) | DOI | MR | Zbl

[26] Ober R. J., McFarlane D., “Balanced Canonical Forms for Minimal Systems: A normalized Coprime Factor Approach”, Linear Algebra Appl., 122–124 (1989), 23–64 (in English) | DOI | MR | Zbl

[27] Antoulas A. C., Sorensen D. C., Zhou Y., “On the Decay Rate of Hankel Singular Values and Related Issues”, Systems Contr. Lett., 46 (2002), 323–342 (in English) | DOI | MR | Zbl

[28] Wilson D. A., “The Hankel Operator and its Induced Norms”, Int. J. Contr., 42 (1985), 65–70 (in English) | DOI | MR | Zbl

[29] Anderson B. D. O., Jury E. I., Mansour M., “Schwarz Matrix Properties for Continuous and Discrete Time Systems”, Int. J. Contr., 3 (1976), 1–16 (in English) | DOI | MR

[30] Peeters R., Hanzon B., Olivi M., “Canonical Lossless State-Space Systems: Staircase Forms and the Schur Algorithm”, Lin. Alg. Appl., 425:2–3 (2007), 404–433 (in English) | DOI | MR | Zbl

[31] Tang X., Wang S., “A Low Hardware Overhead Self-diagnosis Technique Using ReedSolomon Codes for Self-repairing Chips”, IEEE Trans. Comput., 59:10 (2010), 1309–1319 (in English) | DOI | MR | Zbl