@article{VSGU_2019_25_3_a2,
author = {M. V. Shamolin},
title = {Problems of differential and topological diagnostics. {Part~II.} {Problem} of differential diagnostics},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {22--32},
year = {2019},
volume = {25},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2019_25_3_a2/}
}
TY - JOUR AU - M. V. Shamolin TI - Problems of differential and topological diagnostics. Part II. Problem of differential diagnostics JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2019 SP - 22 EP - 32 VL - 25 IS - 3 UR - http://geodesic.mathdoc.fr/item/VSGU_2019_25_3_a2/ LA - ru ID - VSGU_2019_25_3_a2 ER -
%0 Journal Article %A M. V. Shamolin %T Problems of differential and topological diagnostics. Part II. Problem of differential diagnostics %J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ %D 2019 %P 22-32 %V 25 %N 3 %U http://geodesic.mathdoc.fr/item/VSGU_2019_25_3_a2/ %G ru %F VSGU_2019_25_3_a2
M. V. Shamolin. Problems of differential and topological diagnostics. Part II. Problem of differential diagnostics. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 25 (2019) no. 3, pp. 22-32. http://geodesic.mathdoc.fr/item/VSGU_2019_25_3_a2/
[1] Shamolin M. V., “Problems of differential and topological diagnostics. Part 1. Motion equations and classification of malfunctions”, Vestnik of Samara University. Natural Science Series, 25:1 (2019), 32–43 | DOI | MR | Zbl
[2] Borisenok I. T., Shamolin M. V., “Resolving a problem of differential diagnostics”, Fundamental and Applied Mathematics, 5:3 (1999), 775–790 (in Russian) | MR | Zbl
[3] Shamolin M. V., Certain Problems of Differential and Topological Diagnostics, 2nd edition, revised and enlarged, Ekzamen, M., 2007 (in Russian)
[4] Shamolin M. V., “Foundations of Differential and Topological Diagnostics”, J. Math. Sci., 114:1 (2003), 976–1024 (in English) | DOI | MR | Zbl
[5] Parkhomenko P. P., Sagomonian E. S., Foundations of Technical Diagnostics, Energiya, M., 1981 (in Russian)
[6] Mironovskii L. A., “Functional Diagnosing of Dynamical Systems”, Automation and Remote Control, 1980, no. 8, 96–121 (in Russian)
[7] Okunev Yu.M., Parusnikov N. A., Structural and Algorithmic Aspects of Modeling for Control Problems, Izd-vo MGU, M., 1983 (in Russian)
[8] Chikin M. G., “Phase-Constrained Systems”, Automation and Remote Control, 1987, no. 10, 38–46 (in Russian) | MR | Zbl
[9] Zhukov V. P., “On Sufficient and Necessary Conditions for the Asymptotic Stability of Nonlinear Dynamical Systems”, Automation and Remote Control, 1994, no. 3, 24–36 (in Russian) | Zbl
[10] Zhukov V. P., “On the Sufficient and Necessary Conditions for Robustness of the Nonlinear Dynamic Systems in Terms of Stability Retention”, Automation and Remote Control, 69:1 (2008), 27–35 (in English) | DOI | MR | Zbl
[11] Zhukov V. P., “Reduction of Stability Study of Nonlinear Dynamic Systems by the Second Lyapunov Method”, Automation and Remote Control, 66:12 (2005), 1916–1928 (in English) | DOI | MR | Zbl
[12] Borisenok I. T., Shamolin M. V., “Solving the problem of differential diagnostics by the method of statistical tests”, Moscow University Mechanics Bulletin, 2001, no. 1, 29–31 (in Russian) | MR | Zbl
[13] Beck A., Teboulle M., “Mirror Descent and Nonlinear Projected Subgradient Methods for Convex Optimization”, Oper. Res. Lett., 31:3 (2003), 167–175 (in English) https://web.iem.technion.ac.il/images/user-files/becka/papers/3.pdf | DOI | MR | Zbl
[14] Ben-Tal A., Margalit T., Nemirovski A., “The Ordered Subsets Mirror Descent Optimization Method with Applications to Tomography”, SIAM J. Optim., 12:1 (2001), 79–108 (in English) | DOI | MR | Zbl
[15] Su W., Boyd S., Candes E., “A Differential Equation for Modeling Nesterov's Accelerated Gradient Method: Theory and Insights”, J. Machine Learning Res., 2016, no. 17(153), 1–43 (in English) https://www.researchgate.net/publication/311221666_A_differential_equation_for_modeling_Nesterovs_accelerated_gradient_method_Theory_and_insights'>https://www.researchgate.net/publication/311221666_A_differential_equation_for_modeling_Nesterov's_accelerated_gradient_method_Theory_and_insights
[16] Shamolin M. V., “Diagnostics of Gyro-Stabilized Platform, Included in the Aircraft Motion Control System”, Electronic Modeling, 33:3 (2011), 121–126 (in Russian)
[17] Shamolin M. V., “Diagnostics of Aircraft Motion in Planning Descent Mode”, Electronic Modeling, 32:5 (2010), 31–44 (in Russian)
[18] Fleming W. H., “Optimal Control of Partially Observable Diffusions”, SIAM J. Control., 6:2 (1968), 194–214 (in English) | DOI | MR | Zbl
[19] Choi D. H., Kim S. H., Sung D. K., “Energy-efficient Maneuvering and Communication of a Single UAV-based Relay”, IEEE Trans. Aerosp. Electron. Syst., 50:3 (2014), 2119–2326 (in English) | DOI
[20] Ho D.-T., Grotli E. I., Sujit P. B., Johansen T. A., Sousa J. B., “Optimization of Wireless Sensor Network and UAV Data Acquisition”, J. Intelligent Robot. Syst., 78:1 (2015), 159–179 (in English) | DOI
[21] Ceci C., Gerardi A., Tardelli P., “Existence of Optimal Controls for Partially Observed Jump Processes”, Acta Appl. Math., 74:2 (2002), 155–175 (in English) | DOI | MR | Zbl
[22] Rieder U., Winter J., “Optimal Control of Markovian Jump Processes with Partial Information and Applications to a Parallel Queueing Model”, Math. Meth. Oper. Res., 70 (2009), 567–596 (in English) | DOI | MR | Zbl
[23] Chiang M., Tan C. W., Hande P., Lan T., “Power control in wireless cellular networks”, Foundations and Trends in Networking, 2:4 (2008), 381–533 (in English) https://www.princeton.edu/c̃hiangm/pc.pdf | DOI
[24] Altman E., Avrachenkov K., Menache I., Miller G., Prabhu B. J., Shwartz A., “Power control in wireless cellular networks”, IEEE Trans. Autom. Contr., 54:10 (2009), 2328–2340 (in English) | DOI | MR | Zbl
[25] Ober R. J., “Balanced Parameterization of Classes of Linear Systems”, SIAM J. Control Optimization, 29:6 (1991), 1251–1287 (in English) | DOI | MR | Zbl
[26] Ober R. J., McFarlane D., “Balanced Canonical Forms for Minimal Systems: A normalized Coprime Factor Approach”, Linear Algebra Appl., 122–124 (1989), 23–64 (in English) | DOI | MR | Zbl
[27] Antoulas A. C., Sorensen D. C., Zhou Y., “On the Decay Rate of Hankel Singular Values and Related Issues”, Systems Contr. Lett., 46 (2002), 323–342 (in English) | DOI | MR | Zbl
[28] Wilson D. A., “The Hankel Operator and its Induced Norms”, Int. J. Contr., 42 (1985), 65–70 (in English) | DOI | MR | Zbl
[29] Anderson B. D. O., Jury E. I., Mansour M., “Schwarz Matrix Properties for Continuous and Discrete Time Systems”, Int. J. Contr., 3 (1976), 1–16 (in English) | DOI | MR
[30] Peeters R., Hanzon B., Olivi M., “Canonical Lossless State-Space Systems: Staircase Forms and the Schur Algorithm”, Lin. Alg. Appl., 425:2–3 (2007), 404–433 (in English) | DOI | MR | Zbl
[31] Tang X., Wang S., “A Low Hardware Overhead Self-diagnosis Technique Using ReedSolomon Codes for Self-repairing Chips”, IEEE Trans. Comput., 59:10 (2010), 1309–1319 (in English) | DOI | MR | Zbl