Integro-differential equations embodying powers of a differential operator
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 25 (2019) no. 3, pp. 12-21 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We establish solvability and correctness criteria for two Fredholm type linear integro-differential operators $B_2, B_4$ encompassing up to second and fourth powers, respectively, of a differential operator $\widehat{A}$ with a known inverse $I=\widehat{A}^{-1}$. We also derive explicit solution formulae to corresponding initial and boundary value problems by using the inverse of the differential operator. The approach is based on the theory of the extensions of linear operators in Banach spaces. Three example problems for ordinary and partial integro-differential operators are solved.
Keywords: integro-differential equations, initial value problems, boundary value problems, differential operators, power operators, composite products
Mots-clés : exact solutions.
@article{VSGU_2019_25_3_a1,
     author = {I. N. Parasidis and E. Providas},
     title = {Integro-differential equations embodying powers of a differential operator},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {12--21},
     year = {2019},
     volume = {25},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2019_25_3_a1/}
}
TY  - JOUR
AU  - I. N. Parasidis
AU  - E. Providas
TI  - Integro-differential equations embodying powers of a differential operator
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2019
SP  - 12
EP  - 21
VL  - 25
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSGU_2019_25_3_a1/
LA  - en
ID  - VSGU_2019_25_3_a1
ER  - 
%0 Journal Article
%A I. N. Parasidis
%A E. Providas
%T Integro-differential equations embodying powers of a differential operator
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2019
%P 12-21
%V 25
%N 3
%U http://geodesic.mathdoc.fr/item/VSGU_2019_25_3_a1/
%G en
%F VSGU_2019_25_3_a1
I. N. Parasidis; E. Providas. Integro-differential equations embodying powers of a differential operator. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 25 (2019) no. 3, pp. 12-21. http://geodesic.mathdoc.fr/item/VSGU_2019_25_3_a1/

[1] Biyarov B. N., Abdrasheva G. K., “Relatively Bounded Perturbations of Correct Restrictions and Extensions of Linear Operators”, Functional Analysis in Interdisciplinary Applications, FAIA 2017, Springer Proceedings in Mathematics Statistics, 216, Springer, 2017, 213–221 (in English) | DOI | MR | Zbl

[2] Parasidis I. N., Providas E., “Extension Operator Method for the Exact Solution of Integro-Differential Equations”, Contributions in Mathematics and Engineering, In Honor of Constantin Carathéodory, Springer International Publishing, Cham, 2016, 473–496 (in English) | DOI | MR | Zbl

[3] Parasidis I. N., Providas E., “Resolvent Operators for Some Classes of Integro-Differential Equations”, Mathematical Analysis, Approximation Theory and Their Applications, Springer International Publishing, Cham, 2016, 535–558 (in English) | DOI | MR | Zbl

[4] Parasidis I. N., Providas E., “On the Exact Solution of Nonlinear Integro-Differential Equations”, Applications of Nonlinear Analysis, Springer International Publishing, Cham, 2018, 591–609 (in English) | DOI | MR | Zbl

[5] Polyanin A. D., Manzhirov A. V., Handbook of integral equations, CRC Press LLC, Boca Raton, Florida, USA, 1998 (in English) | MR | Zbl

[6] Polyanin A. D., Zhurov A. I., “Exact solutions to some classes of nonlinear integral, integro-functional, and integro-differential equations”, Dokl. Math., 77 (2008), 315–319 (in English) | DOI | MR

[7] Vassiliev N. N., Parasidis I. N., Providas E., “Exact solution method for Fredholm integro-differential equations with multipoint and integral boundary conditions. Part 1. Extention method”, Information and Control Systems, 2018, no. 6, 14–23 (in English) | DOI | MR

[8] Vassiliev N. N., Parasidis I. N., Providas E., “Exact solution method for Fredholm integro-differential equations with multipoint and integral boundary conditions. Part 2. Decomposition-extension method for squared operators”, Information and Control Systems, 2019, no. 2, 2–9 (in English) | DOI | MR

[9] Wazwaz A. M., Linear and nonlinear integral equations, methods and applications, Springer, Berlin–Heidelberg, 2011 (in English) | DOI | MR | Zbl

[10] Zhu X., Li L., “Closed form solution for a nonlocal strain gradient rod in tension”, Int. J. Eng. Sci., 119 (2017), 16–28 (in English) | DOI | MR | Zbl