To the question of fractional differentiation. Part II
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 25 (2019) no. 3, pp. 7-11 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper the investigation continues with the help of definition Fourier fractional differentiation setting in the previous paper “To the question of fractional differentiation”. There were given explicit expressions of a fairly wide class of periodic functions and for functions represented in the form of wavelet decompositions. It was shown that for the class of exponential functions all derivatives with non-integer exponent are equal to zero. The found derivatives have a direct relationship to practical problems and let them use to solve a large class of problems associated with the study of phenomena such as thermal conduction, transmissions, electrical and magnetic susceptibility for a wide range of materials with fractal dimensions.
Keywords: fractional differentiation, Fourier integral, Fourier's series, periodical functions, Gaussian exponent, exponential functions, numerical simulation.
Mots-clés : wavelet decompositions
@article{VSGU_2019_25_3_a0,
     author = {S. O. Gladkov and S. B. Bogdanova},
     title = {To the question of fractional differentiation. {Part~II}},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {7--11},
     year = {2019},
     volume = {25},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2019_25_3_a0/}
}
TY  - JOUR
AU  - S. O. Gladkov
AU  - S. B. Bogdanova
TI  - To the question of fractional differentiation. Part II
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2019
SP  - 7
EP  - 11
VL  - 25
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSGU_2019_25_3_a0/
LA  - ru
ID  - VSGU_2019_25_3_a0
ER  - 
%0 Journal Article
%A S. O. Gladkov
%A S. B. Bogdanova
%T To the question of fractional differentiation. Part II
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2019
%P 7-11
%V 25
%N 3
%U http://geodesic.mathdoc.fr/item/VSGU_2019_25_3_a0/
%G ru
%F VSGU_2019_25_3_a0
S. O. Gladkov; S. B. Bogdanova. To the question of fractional differentiation. Part II. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 25 (2019) no. 3, pp. 7-11. http://geodesic.mathdoc.fr/item/VSGU_2019_25_3_a0/

[1] Gladkov S. O., Bogdanova S. B., “On fractional differentiation”, Vestnik of Samara University. Natural Science Series, 24:3 (2018), 7–13 (in Russian) | DOI | MR | Zbl

[2] Gladkov S. O., “On the theory of one-dimensional and quasi-one-dimensional thermal conductivity”, Technical Physics (Zhurnal Tekhnicheskoi Fiziki), 67:7 (1997), 8–12 (in Russian)

[3] Gladkov S. O., “On the theory of hydrodynamic phenomena in quasi-one-dimensional systems”, Technical Physics (Zhurnal Tekhnicheskoi Fiziki), 71:11 (2001), 130–132 (in Russian)

[4] Charles K. Chui, An Introduction to Wavelets, Mir, M., 2001, 412 pp. (in Russian)

[5] Dobeshi I., Ten Lectures on Wavelets, RKhD, Izhevsk, 2001, 464 pp. (in Russian)

[6] Mallat S., Wavelets in Signal Processing, Mir, M., 2005, 672 pp. (in Russian)

[7] Astaf'eva N. M., “Wavelet analysis: basic theory and some applications”, Physics-Uspekhi, 39:11 (1996), 1085–1108 | DOI | DOI

[8] Vorob'yev V. I., Gribunin V. G., Theory and practice of wavelet transform, VUS, SPb., 1999, 206 pp. (in Russian)

[9] Petukhov A. P., Introduction to Burst Basis Theory, SPbGTU, SPb., 1999, 132 pp. (in Russian)

[10] Koshlyakov N. S., Gliner E. B., Smirnov M. M., Partial differential equations of mathematical physics, Vysshaya shkola, M., 1970, 710 pp. (in Russian)