Theoretical and experimental investigation of crack propagation direction. Part II
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 25 (2019) no. 2, pp. 55-74 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is devoted to experimental study of the crack propagation direction angles under mixed mode loading in the plate with the central crack inclined at different angles. Fracture mechanics criteria are discussed and compared. In the present paper the crack propagation direction angles on the basis of three different fracture criteria are found. The maximum tangential stress criterion, the minimum strain energy density criterion and the deformation criterion are used and analysed. The generalized forms of these criteria have been used. It implies that the crack propagation direction angles are obtained with the Williams series expansion in which the higher order terms are kept. The calculations are performed in Waterloo Maple computer algebra software. The analysis of the crack propagation direction angles show that the influence of the higher order terms can't be ignored. The angles differ considerably when the higher order terms are taken into account.
Keywords: isotropic linear elastic material, brittle fracture, criteria of crack growth, maximum tangential stress criterion, minimum strain energy density criterion, maximum tangential strain criterion.
@article{VSGU_2019_25_2_a3,
     author = {V. S. Dolgikh and A. V. Pulkin and E. A. Mironova and A. A. Peksheva and L. V. Stepanova},
     title = {Theoretical and experimental investigation of crack propagation direction. {Part~II}},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {55--74},
     year = {2019},
     volume = {25},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2019_25_2_a3/}
}
TY  - JOUR
AU  - V. S. Dolgikh
AU  - A. V. Pulkin
AU  - E. A. Mironova
AU  - A. A. Peksheva
AU  - L. V. Stepanova
TI  - Theoretical and experimental investigation of crack propagation direction. Part II
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2019
SP  - 55
EP  - 74
VL  - 25
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSGU_2019_25_2_a3/
LA  - ru
ID  - VSGU_2019_25_2_a3
ER  - 
%0 Journal Article
%A V. S. Dolgikh
%A A. V. Pulkin
%A E. A. Mironova
%A A. A. Peksheva
%A L. V. Stepanova
%T Theoretical and experimental investigation of crack propagation direction. Part II
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2019
%P 55-74
%V 25
%N 2
%U http://geodesic.mathdoc.fr/item/VSGU_2019_25_2_a3/
%G ru
%F VSGU_2019_25_2_a3
V. S. Dolgikh; A. V. Pulkin; E. A. Mironova; A. A. Peksheva; L. V. Stepanova. Theoretical and experimental investigation of crack propagation direction. Part II. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 25 (2019) no. 2, pp. 55-74. http://geodesic.mathdoc.fr/item/VSGU_2019_25_2_a3/

[1] D. Floros, A. Ekberg, F. Larsson, “Evaluation of crack growth direction criteria on mixed-mode fatigue crack growth experiments”, International Journal of Fatigue, 2019, 105075 (in English) | DOI

[2] S. Sajith, K. S. R. K. Murthy, P. S. Robi, “Experimental and numerical Investigation of mixed mode fatigue crack growth models in aluminium 6061-T6”, International Journal of Fatigue, 130 (2020), 105285 | DOI

[3] L. V. Stepanova, “Influence of the higher order terms in Williams' series expansion of the stress field on the stress-strain state in the vicinity of the crack tip. Part I”, Vestnik of Samara University. Natural Science Series, 25:1 (2019), 63–79 (in Russian) | DOI | MR

[4] L. V. Stepanova, “Influence of the higher order terms in Williams' series expansion of the stress field on the stress-strain state in the vicinity of the crack tip. Part II”, Vestnik of Samara University. Natural Science Series, 25:1 (2019), 80–96 (in Russian) | DOI | MR

[5] L. Malikova, V. Vesely, S. Seitl, “Crack propagation direction in a mixed mode geometry estimated via multi-parameter fracture criteria ”, International Journal of Fatigue, 89 (2016), 99–107 (in English) | DOI

[6] G. Hello, “Derivation of complete crack-tip stress expansions from Westergaard-Sanford solutions ”, International Journal of Solids and Structures, 144–145 (2018), 265–275 (in English) | DOI

[7] M. Kachanov, B. Shafiro, I. Tsurkov, Handbook of Elasticity Solutions, Springer-Science+Business Media, Dordrecht, 2003, 329 pp. (in English) | DOI | MR

[8] G. Hello, M. B. Roelandt J. M. Tahar, “Analytical determination of coefficients in crack-tip stress expansions for a finite crack in an infinite plane medium”, International Journal of Solids and Structures, 49 (2012), 556–566 | DOI

[9] L. V. Stepanova, “Asymptotic analysis of the crack tip stress field (consideration of higher order terms)”, Siberian Journal of Numerical Mathematics, 2019, no. 3, 345–361 (in Russian) | DOI

[10] L. Stepanova, P. Roslyakov, “Complete Williams asymptotic expansion of the stress field near the crack tip: Analytical solutions, interference-optic methods and numerical experiments”, AIP Conference Proceedings, 1785, 030029 (in Russian) | DOI

[11] L. M. Kachanov, Fundementals of Fracture Mechanics, Nauka, M., 1974, 312 pp. (in Russian) https://www.studmed.ru/kachanov-lm-osnovy-mehaniki-razrusheniya_b7befb002cc.html

[12] N. F. Morozov, Mathematical Questions of Crack Theory, Nauka, M., 1984, 255 pp. (in Russian)

[13] V. Z. Parton, Fracture Mechanics: From theory to practice, Nauka, M., 1990, 240 pp. (in Russian)

[14] V. Z. Parton, E. M. Morozov, Mechanics of elastoplastic fracture, Nauka, M., 1985, 504 pp. (in Russian)

[15] A. B. Anchupov, M. G. Slobodyaskij, V. P. Anchupov, V. A. Rusanov, “Experimental evaluation of specimen durability at standard testing on tension”, Mechanical equipment of metallurgical factories, 2013, no. 2, 27–34 (in Russian)

[16] V. Shlyannikov, A. Tumanov, “Characterization of crack tip stress fields in test specimens using mode mixity parameters”, International Journal of Fracture, 185 (2014), 49–76 (in English) | DOI

[17] Yu. G. Matvienko, “The non-singular T-stresses in fracture mechanics criteria of solids with notches”, Vestnik of Lobachevsky University of Nizhni Novgorod, 2011, no. 4(5), 12–22 (in Russian)

[18] Yu. G. Matvienko, Models and criteria of fracture mechanics, Fizmatlit, M., 2006, 328 pp. (in Russian)

[19] Y. G. Matvienko, “Fracture mechanics approaches in the analysis of deformation and fracture of bodies with cuts and notches”, Journal of Machinery Manufacture and Reliability, 2008, no. 5, 64–72 (in Russian)

[20] G. P. Cherepanov, Mechanics of Brittle Fracture, Nauka, M., 2012, 640 pp. (in Russian)