Theoretical and experimental investigation of crack propagation direction. Part I
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 25 (2019) no. 2, pp. 30-54
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the present paper the crack propagation direction angles on the basis of three different fracture criteria are found. The maximum tangential stress criterion, the minimum strain energy density criterion and the deformation criterion are used and analysed. The generalized forms of these criteria have been used. It implies that the crack propagation direction angles are obtained with the Williams series expansion in which the higher order terms are kept. The calculations are performed in Waterloo Maple computer algebra software. The analysis of the crack propagation direction angles show that the influence of the higher order terms can't be ignored. The angles differ considerably when the higher order terms are taken into account.
Keywords: isotropic linear elastic material, brittle fracture, criteria of crack growth, maximum tangential stress criterion, minimum strain energy density criterion, deformation criterion.
@article{VSGU_2019_25_2_a2,
     author = {V. S. Dolgikh and A. V. Pulkin and E. A. Mironova and A. A. Peksheva and L. V. Stepanova},
     title = {Theoretical and experimental investigation of crack propagation direction. {Part~I}},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {30--54},
     year = {2019},
     volume = {25},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2019_25_2_a2/}
}
TY  - JOUR
AU  - V. S. Dolgikh
AU  - A. V. Pulkin
AU  - E. A. Mironova
AU  - A. A. Peksheva
AU  - L. V. Stepanova
TI  - Theoretical and experimental investigation of crack propagation direction. Part I
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2019
SP  - 30
EP  - 54
VL  - 25
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSGU_2019_25_2_a2/
LA  - ru
ID  - VSGU_2019_25_2_a2
ER  - 
%0 Journal Article
%A V. S. Dolgikh
%A A. V. Pulkin
%A E. A. Mironova
%A A. A. Peksheva
%A L. V. Stepanova
%T Theoretical and experimental investigation of crack propagation direction. Part I
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2019
%P 30-54
%V 25
%N 2
%U http://geodesic.mathdoc.fr/item/VSGU_2019_25_2_a2/
%G ru
%F VSGU_2019_25_2_a2
V. S. Dolgikh; A. V. Pulkin; E. A. Mironova; A. A. Peksheva; L. V. Stepanova. Theoretical and experimental investigation of crack propagation direction. Part I. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 25 (2019) no. 2, pp. 30-54. http://geodesic.mathdoc.fr/item/VSGU_2019_25_2_a2/

[1] M. R. M. Aliha, “On the predicting mode II fracture toughness (KIIc) of hot mix asphalt mixtures using the strain energy density criterion”, Theoretical and Applied Fracture Mechanics, 99 (2019), 36–43 (in English) | DOI

[2] Yu. N. Rabotnov, Solids Mechanics, Nauka, M., 1988, 744 pp. (in Russian)

[3] F. Berto, M. R. Ayatollahi, “A review of the local strain energy density approach to V-nothces”, Physical mesomechanics, 20:2 (2017), 14–27 (in English) https://cyberleninka.ru/article/v/a-review-of-the-local-strain-energy-density-approach-applied-to-v-notches

[4] M. J. Razavi, M. R. M. Aliha, F. Berto, “Application of an average strain energy density criterion to obtain the mixed mode fracture load of granite rock tested with the cracked asymmetric four-point bend specimen”, Theoretical and Applied Fracture Mechanics, 33 (2017), 25–33 (in English) | DOI

[5] N. A. Mahutov, Deformation Criteria of Failure and Calculation of the Strength of Structural Members, Mashinostroenie, M., 1981, 272 pp. (in Russian)

[6] N. F. Morozov, Mathematical Questions of Crack Theory, Nauka, M., 1984, 255 pp. (in Russian)

[7] N. F. Morozov, Yu. V. Petrov, Problems of dynamics of fracture of solids, SPbGU, St. Petersburg, 1997, 122 pp. (in Russian)

[8] Yu. G. Matvienko, Models and criteria of fracture mechanics, Fizmatlit, M., 2006, 328 pp. (in Russian)

[9] L. M. Kachanov, Fundementals of Fracture Mechanics, Nauka, M., 1974, 312 pp. (in Russian)

[10] V. Z. Parton, Fracture Mechanics: From theory to practice, Nauka, M., 1990, 240 pp. (in Russian)

[11] E. S. Sibgatullin, K. E. Sibgatullin, “About the tensor of coefficients of intensity of tension and criteria of desctruction in mechanics of cracks”, Modern high technologies, 2014, no. 2, 56–60 (in Russian)

[12] A. I. Lurie, Theory of elasticity, Nauka, M., 1970, 940 pp.

[13] V. Z. Parton, E. M. Morozov, Mechanics of elastoplastic fracture, Nauka, M., 1985, 504 pp. (in Russian)

[14] K. Hellan, Introduction in Fracture Mechanics, Mir, M., 1988, 364 pp. (in Russian)

[15] H.M. Meliani et al., “The effective T-stress estimation and crack path emanating from U-notches”, Engineering Fracture Mechanics, 77 (2010), 1682–1692 (in English) | DOI

[16] G. S. Pisarenko, A. Ya. Lebedev, Deformation and Strength of Materials under Complex Stress State, Naukova Dumka, Kiev, 1976, 416 pp. (in Russian)

[17] G. P. Cherepanov, Mechanics of Brittle Fracture, Nauka, M., 2012, 640 pp. (in Russian)

[18] R. V. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, Metallurgiya, M., 1989, 576 pp. (in Russian)

[19] L. V. Stepanova, “Asymptotic analysis of the crack tip stress field (consideration of higher order terms”, Siberian Journal of Numerical Mathematics, 2019, no. 3, 345–361 (in Russian) | DOI

[20] L. V. Stepanova, P. S. Roslyakov, “Complete Williams Asymptotic Expansion near the Crack Tips of Collinear Cracks of Equal Lengths in an Infinite Plane ”, Solid State Phenomena, 258 (2017), 209–212 (in English) | DOI

[21] L. V. Stepanova, P. S. Roslyakov, “Complete asymptotic expansion M. Williams near the crack tips of collinear cracks of equal lengths in an infinite plane medium”, PNRPU Mechanics Bulletin, 2015, no. 4, 188–225 (in Russian) | DOI

[22] L. Stepanova, P. Roslyakov, “Complete Williams asymptotic expansion of the stress field near the crack tip: Analytical solutions, interference-optic methods and numerical experiments”, AIP Conference Proceedings, 1785 (2016), 030029 (in English) | DOI

[23] G. C. Sih, Application of Strain-Energy – Density Theory to Fundamental Fracture Problem, Institute of Fracture and Solid Mechanical Technical Report, AFOSR-RT-73-1, Lehigh University, 1973, 19–21 (in English)

[24] M. M. Mirsayar, “Mixed mode fracture analysis using extended maximum tangential strain criterion”, Materials and Design, 86 (2015), 941–947 (in English) | DOI

[25] M. R. Ayatollahi, Rashidi Moghaddam, F. Berto, “A generalized strain energy density criterion for mixed mode fracture analysis in brittle and quasi-brittle materials ”, Theoretical and Applied Fracture Mechanics, 79 (2015), 70–76 (in English) | DOI

[26] M. A. Legan, N. A. Legan, “Dynamics of continuum”, Deformation and fracture of the structurally inhomogeneous media and structures, IGiL, Novosibirsk, 1990, 49–60 (in Russian)

[27] G. Hello, M. B. Tahar, J. M. Roelandt, “Analytical determination of coefficients in crack-tip stress expansions for a finite crack in an infinite plane medium”, International Journal of Solids and Structures, 49 (2012), 556–566 (in English) | DOI

[28] L. V. Stepanova, “Eigenvalue of the antiplane shear crack problem for a power-law material”, Journal of Applied Mechanics and Technical Physics, 49:1 (2008), 142–147 (in English) | DOI | MR | Zbl

[29] L. V. Stepanova, M. Ye. Fedina, “Self-similar solution of a tensile crack problem in a coupled formulation”, Journal of Applied Mathematics and Mechanics, 72:3 (2008), 360–368 (in English) | DOI | MR | Zbl

[30] G. C. Sih, “Strain energy density factor applied to mixed mode crack problems”, Intern. J. Fract., 10:3 (1974), 305–321 (in English) | DOI

[31] A. K. Wong, “On the application of the strain energy density theory in predicting crack initiation and angle of growth ”, Engng Fract. Mech. 1997, 27:2, 157–170 (in English) | DOI | MR

[32] Yu. N. Ovcharenko, “Strain energy deformation in linear fracture mechanics and its application to V-notches”, Actual problems of mechanics, 2006, no. 2, 141–149 (in Russian)

[33] I. M. Lavit, “On the asymptotics of the stress and strain fields near a crack tip”, Mechanics of Solids, 2009, no. 3, 54–57 (in Russian)

[34] V. N. Shlyannikov, Computational Mechanics of Deformation and Fracture Mechanics, KGEU, Kazan, 2001, 257 pp. (in Russian)

[35] V. N. Shlyannikov, I. N. Shkanov, “Stress intensity factors for plates with arbitrary oriented crack under twoaxial loading”, Dynamics and Strength of Mechanical Systems, PPI, Perm, 1981, 181–185 (in Russian)

[36] V. N. Shlyannikov, “Strain energy density and fracture process zone. Theoretical Prerequisites”, Strength of Materials, 1995, 3–17 (in Russian)

[37] V. N. Shlyannikov, Mixed mode forms of crack propagation under complex stress state, Zavodskaya laboratoriya, M., 1990, 77–90 (in Russian)

[38] V. N. Shlyannikov, A. V. Tumanov, Elastic Mode Mixity Parameters for Semi-Elliptical Crack under Biaxial Loading, Federal'nyi issledovatel'skii tsentr «Kazanskii nauchnyi tsentr RAN», Kazan, 2009, 34 pp. (in Russian)

[39] L. V. Stepanova, “Influence of the higher order terms in Williams' series expansion of the stress field on the stress-strain state in the vicinity of the crack tip. Part I”, Vestnik of Samara University. Natural Science Series, 25:1 (2019), 63–79 (in Russian) | DOI | MR

[40] L. V. Stepanova, “Influence of the higher order terms in Williams' series expansion of the stress field on the stress-strain state in the vicinity of the crack tip. Part II”, Vestnik of Samara University. Natural Science Series, 25:1 (2019), 80–96 (in Russian) | DOI | MR