On a construction of a frame in the Hardy space defined on the two-dimensional polydisc
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 25 (2019) no. 2, pp. 21-29 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the article we present a construction of a representing system based on the discretized Szego kernel in the Hardy space defined on the two-dimensional polydisc. An answer to the question on the existence of representing systems based on reproducing kernels depends significantly on the space under consideration. It is well known that in the Hardy space there are no both bases and Duffin — Shaeffer frames, based on the discretized Szego kernel. We use a notion of a Banach frame which generalizes the concept of the Duffin — Shaeffer frame. Having constructed a Banach frame, we can say that any function from the Hardy space can be represented as a series of discretized kernels.
Keywords: frame, Banach frame, representing system, reproducing kernel, Szego kernel, Hardy space.
@article{VSGU_2019_25_2_a1,
     author = {K. S. Speransky},
     title = {On a construction of a frame in the {Hardy} space defined on the two-dimensional polydisc},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {21--29},
     year = {2019},
     volume = {25},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2019_25_2_a1/}
}
TY  - JOUR
AU  - K. S. Speransky
TI  - On a construction of a frame in the Hardy space defined on the two-dimensional polydisc
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2019
SP  - 21
EP  - 29
VL  - 25
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSGU_2019_25_2_a1/
LA  - ru
ID  - VSGU_2019_25_2_a1
ER  - 
%0 Journal Article
%A K. S. Speransky
%T On a construction of a frame in the Hardy space defined on the two-dimensional polydisc
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2019
%P 21-29
%V 25
%N 2
%U http://geodesic.mathdoc.fr/item/VSGU_2019_25_2_a1/
%G ru
%F VSGU_2019_25_2_a1
K. S. Speransky. On a construction of a frame in the Hardy space defined on the two-dimensional polydisc. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 25 (2019) no. 2, pp. 21-29. http://geodesic.mathdoc.fr/item/VSGU_2019_25_2_a1/

[1] P. R. Halmos, A Hilbert Space Problem Book, Mir, M., 1970, 351 pp. (in Russian)

[2] P. L. Duren, Theory of $H^p$ spaces, Academic Press, New York, 1970, 258 pp. (in English) http://bookre.org/reader?file=1465899

[3] P. L. Duren, A. P. Schuster, Bergman spaces, AMS, Providence, 2004, 318 pp. (in English) http://bookre.org/reader?file=2233148 | Zbl

[4] E. Fricain, L. Khoi, P. Lefèvre, “Representing systems generated by reproducing kernels”, Indag. Math., 29:3 (2018), 860–872 (in English) | DOI | MR | Zbl

[5] K. S. Speransky, P. A. Terekhin, “A representing system generated by the Szegö kernel for the Hardy space”, Indag. Math., 29:5 (2018), 1318–1325 (in English) | DOI | MR | Zbl

[6] J. Agler, J. E. McCarthy, Pick interpolation and Hilbert function spaces, AMS, Providence, 2002, 308 pp. (in English) https://ru.b-ok.cc/book/2291887/42a853 | MR | Zbl

[7] R. Duffin, A. Schaeffer, “A class of nonharmonic Fourier series”, Trans. Amer. Math. Soc., 72:2 (1952), 341–366 https://www.ams.org/journals/tran/1952-072-02/S0002-9947-1952-0047179-6/S0002-9947-1952-0047179-6.pdf | DOI | MR | Zbl

[8] P. A. Terekhin, “Frames in a Banach space and their applications to constructing wavelets”, Research on algebra, number theory, functional analysis and adjacent questions, 2, Izd-vo Sarat. un-ta, Saratov, 2003, 65–81 (in Russian)

[9] P. A. Terekhin, “Banach frames in the problem of affine synthesis”, Sbornik: Mathematics, 200:9 (2009), 1383–1402 | DOI | DOI | MR | Zbl

[10] W. Rudin, Functional Analysis, 2nd edition, McGraw-Hill, New York, 1991, 448 pp. https://59clc.files.wordpress.com/2012/08/functional-analysis-_-rudin-2th.pdf | MR | Zbl