The predictor-corrector method for modelling of nonlinear oscillators
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 25 (2019) no. 1, pp. 97-103 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the work physically reasonable algorithm of numerical modeling of nonlinear oscillatory and self-oscillatory systems are offered. The algorithm is based on discrete in time model of the linear oscillator. Nonlinearity is considered by the introduction to the oscillator of additional communications by the structural analysis of an initial system. For approximation of a temporary derivative in nonlinear communications it is offered to use the scheme of the prediction and correction. In spite of the fact that theoretically the algorithm has the second order of accuracy, within the numerical experiment with Van der Pol oscillator it shows better results, than a standard method of the second order — the Heun’s method.
Keywords: oscillatory and self-oscillatory systems, nonlinearity, finite difference scheme, prediction and correction, spectrum of self-oscillations.
@article{VSGU_2019_25_1_a7,
     author = {V. V. Zaytsev and E. Yu. Fedyunin},
     title = {The predictor-corrector method for modelling of nonlinear oscillators},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {97--103},
     year = {2019},
     volume = {25},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2019_25_1_a7/}
}
TY  - JOUR
AU  - V. V. Zaytsev
AU  - E. Yu. Fedyunin
TI  - The predictor-corrector method for modelling of nonlinear oscillators
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2019
SP  - 97
EP  - 103
VL  - 25
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSGU_2019_25_1_a7/
LA  - ru
ID  - VSGU_2019_25_1_a7
ER  - 
%0 Journal Article
%A V. V. Zaytsev
%A E. Yu. Fedyunin
%T The predictor-corrector method for modelling of nonlinear oscillators
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2019
%P 97-103
%V 25
%N 1
%U http://geodesic.mathdoc.fr/item/VSGU_2019_25_1_a7/
%G ru
%F VSGU_2019_25_1_a7
V. V. Zaytsev; E. Yu. Fedyunin. The predictor-corrector method for modelling of nonlinear oscillators. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 25 (2019) no. 1, pp. 97-103. http://geodesic.mathdoc.fr/item/VSGU_2019_25_1_a7/

[1] N. N. Bogolyubov, Yu. A. Mitropol'skiy, Asymptotical methods in nonlinear oscillations theory, 4th edition, Nauka, M., 1974, 504 pp. (in Russian)

[2] P. S. Landa, Nonlinear oscillations and wave, 3th edition, Librokom, M., 2015, 552 pp. (in Russian)

[3] A. A. Samarskiy, A. P. Mikhaylov, Mathematical modeling, Fizmatlit, M., 2002, 302 pp. (in Russian) | MR

[4] T. S. Parker, L. O. Chua, Practical numerical algorithms for chaotic systems, Springer-Verlag, NY, 1989, 348 pp. http://bookre.org/reader?file=464214 | Zbl

[5] E. Hairer, S. Nersett, G. Wanner, Solving ordinary differential equations, Mir, M., 1990, 512 pp. (in Russian)

[6] V. V. Zaytsev, A. N. Shilin, “The mappings of Van der Pol– Duffing generator in discrete time”, Vestnik of Samara University. Natural Science Series, 23:2 (2017), 51–59 (in Russian) | MR

[7] V. V. Zaytsev, A. V. Karlov, Ar. V. Karlov, “About numerical modelling of Thomson self-oscillatory systems”, Vestnik of Samara State University. Natural Science Series, 21:6 (2015), 141–150 (in Russian)

[8] A. P. Kuznetsov, A. V. Savin, Yu. V. Sedova, “Bogdanov-Takens bifurcation:from flows to discrete systems”, Izvestiya VUZ. Appled nonlinear dynamics, 17:6 (2009), 39–158 (in Russian)

[9] V. S. Anishhenko, V. V. Astakhov, T. E. Vadivasova, A. B. Neiman, G. I. Strelkova, L. Schimanskii-Gaier, Nonlinear effects in chaotic and stochastic systems, Institut komp'yuternykh issledovaniy, M.–Izhevsk, 2003, 544 pp. (in Russian)

[10] V. I. Nefedov, S. A. Reshetnyak, G. N. Tret'yakov, E. A. Zasovin, “Filtration of a signal against the background of noise near an attractor”, Journal of Communications Technology and Electronics, 64:2 (2019), 175–180 | DOI

[11] M. I. Balakin, N. M. Ryskin, “Multistabilnost and the difficult oscillatory modes in the generator with the late reflection from loading”, Letters in ZhTF, 45:6 (2019), 33–35 | DOI

[12] V. V. Zaitsev, I. V. Stulov, “About influence of thechanged harminics on dynamics of self-oscillations in discrete time”, Izvestiya VUZ. Appled nonlinear dynamics, 23:6 (2015), 40–46 | DOI