@article{VSGU_2019_25_1_a4,
author = {R. M. Zhabbarov},
title = {Theoretically reconstructed isochromatic fringes in the vicinity of the crack tip},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {57--62},
year = {2019},
volume = {25},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2019_25_1_a4/}
}
TY - JOUR AU - R. M. Zhabbarov TI - Theoretically reconstructed isochromatic fringes in the vicinity of the crack tip JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2019 SP - 57 EP - 62 VL - 25 IS - 1 UR - http://geodesic.mathdoc.fr/item/VSGU_2019_25_1_a4/ LA - ru ID - VSGU_2019_25_1_a4 ER -
R. M. Zhabbarov. Theoretically reconstructed isochromatic fringes in the vicinity of the crack tip. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 25 (2019) no. 1, pp. 57-62. http://geodesic.mathdoc.fr/item/VSGU_2019_25_1_a4/
[1] Broek D., Foundations of fracture mechanics, Vysshaia shkola, M., 1980, 368 pp. (in Russian)
[2] M. L. Williams, “Stress singularities resulting from various boundary conditions in angular corners of plates in tension”, Journal of Applied Mechanics, 19 (1952), 109–114 https://pdfs.semanticscholar.org/fec1/283d078a3d14bd0f3eee30bb482cefa70567.pdf
[3] S. A. Igonin, L. V. Stepanova, “Asymptotics of stress and continuity fields at the tip of a fatigue crack in a damaged medium in conditions of plane stress state”, Vestnik of Samara State University, 2013, no. 9-2(110), 97–108 (in Russian)
[4] E. V. Kukushkin, V. A. Menovshchikov, Т. Т. Ереско, “Analysis of modern views and approaches in the study of fatigue fractures of needle bearings”, Reshetnev Readings, 2013, no. 17, 287–288 (in Russian)
[5] L. V. Stepanova, P. S. Roslyakov, “Complete asymptotic expansion of M. Williams at the tips of two collinear cracks of finite length in an infinite plate”, Bulletin PNRPU. Mechanics, 2015, no. 4, 188–225 (in Russian)
[6] N. M. Godzhaev, Optics, Vysshaia shkola, M., 1977, 432 pp. (in Russian)
[7] K. Ramesh, S. Gupta, A. A. Kelkar, “Evaluation of stress field parameters in fracture mechanics by photoelastisityrevisited”, Engineering Fracture Mechanics, 56 (1997), 25–41; 43–45
[8] A. Vivekannadan, K. Ramesh, “Study of interaction effects of asymmetric cracks under biaxial loading using digital photoelasticity”, Theoretical and Applied Fracture Mechanics, 99 (2019), 104–117
[9] A. Carpinteri, M. Paggi, “Asymptotic analysis in Linear Ealasticity: From the pioneering studies by Wieghardt and Irwin until today”, Engineering Fracture Mechanics, 76 (2009), 1771–1784 http://staff.polito.it/alberto.carpinteri/papers/CARPINTERI_2009_N.549_EFM.pdf
[10] K. Ramesh et al., “A simple approach to photoelastic calibration of glass using digital photoelasticity”, Journal of Non-Crystalline Solids, 378 (2013), 7–14
[11] K. Ramesh, A. Pandey, “An improved normalization technique for white light photoelasticity”, Optics and Lasers in Engineering, 109 (2018), 7–16
[12] K. Ramesh, R. Vivek, “Digital photoelasticity of glass: A comprehensive review”, Optics and Lasers in Engineering, 87 (2016), 59–74
[13] G. Hello, B. Tahar, J. Roelandt, “Analytical determination of coefficients in crack-tip stress epansions for a finite crack in an infinite plane medium”, International Journal of Solid and Structures, 49 (2012), 556–566
[14] L. V. Stepanova, V. S. Dolgikh, “Digital processing of the results of optoelectronic measurements. The photoelasticity method and its application for determination of coefficients of the multiparameter asymptotic Williams expansion of the stress field”, J. Samara State Tech. Univ., Ser. Phys. Math. Sci., 21:4 (2017), 717–735 (in Russian) | MR