Problems of differential and topological diagnostics. Part 1. Motion equations and classification of malfunctions
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 25 (2019) no. 1, pp. 32-43
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the proposed cycle of work, we begin the study of the motion of an aircraft which is described by nonlinear ordinary differential equations. Based on these equations, the probable malfunctions in the motion control system are classified, the concepts of reference malfunctions and their neighborhoods are introduced, the mathematical modeling of these malfunctions and their neighborhoods is carried out, the concept of diagnostic space is introduced, and the mathematical structure of this space is defined. Proposed work is the first in the cycle, therefore, the classification of malfunctions is given. This activity is also a preparatory part of the diagnostic problem, which can be represented in the form of two successively solved problems, i.e., control problem, that is the problem of determining the presence of a malfunction in the system, and diagnostic problem, that is the recognition problem of malfunction specification. This activity is just an illustration of the proposed approach.
Keywords: aircraft motion, control system diagnostics, measured coordinates, classification of malfunctions.
@article{VSGU_2019_25_1_a2,
     author = {M. V. Shamolin},
     title = {Problems of differential and topological diagnostics. {Part~1.} {Motion} equations and classification of malfunctions},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {32--43},
     year = {2019},
     volume = {25},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2019_25_1_a2/}
}
TY  - JOUR
AU  - M. V. Shamolin
TI  - Problems of differential and topological diagnostics. Part 1. Motion equations and classification of malfunctions
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2019
SP  - 32
EP  - 43
VL  - 25
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSGU_2019_25_1_a2/
LA  - ru
ID  - VSGU_2019_25_1_a2
ER  - 
%0 Journal Article
%A M. V. Shamolin
%T Problems of differential and topological diagnostics. Part 1. Motion equations and classification of malfunctions
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2019
%P 32-43
%V 25
%N 1
%U http://geodesic.mathdoc.fr/item/VSGU_2019_25_1_a2/
%G ru
%F VSGU_2019_25_1_a2
M. V. Shamolin. Problems of differential and topological diagnostics. Part 1. Motion equations and classification of malfunctions. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 25 (2019) no. 1, pp. 32-43. http://geodesic.mathdoc.fr/item/VSGU_2019_25_1_a2/

[1] I. T. Borisenok, M. V. Shamolin, “Resolving a Problem of Differential Diagnostics”, Fundamental and Applied Mathematics, 5:3 (1999), 775–790 (in Russ.) | MR | Zbl

[2] M. V. Shamolin, Certain Problems Differential and Topological Diagnostics, Ekzamen, M., 2007 (in Russ.)

[3] M. V. Shamolin, “Foundations of Differential and Topological Diagnostics”, J. Math. Sci., 114:1 (2003), 976–1024 | MR | Zbl

[4] P. P. Parkhomenko, E. S. Sagomonian, Foundations of Technical Diagnostics, Energia, M., 1981 (in Russ.)

[5] L. A. Mironovskii, “Functional Diagnosing of Dynamical Systems”, Automation and Remote Control, 1980, no. 8, 96–121 (in Russ.)

[6] Yu. M. Okunev, N. A. Parusnikov, Structural and Algorithmic Aspects of Modeling for Control Problems, Lomonosov Moscow State University, M., 1983 (in Russ.)

[7] M. G. Chikin, “Systems with Phase Restrictions”, Automation and Remote Control, 1987, no. 10, 38–46 (in Russ.) | MR | Zbl

[8] V. P. Zhukov, “On Sufficient and Necessary Conditions for the Asymptotic Stability of Nonlinear Dynamical Systems”, Automation and Remote Control, 1994, no. 3, 24–36 (in Russ.) | Zbl

[9] V. P. Zhukov, “On the Sufficient and Necessary Conditions for Robustness of the Nonlinear Dynamic Systems in Terms of Stability Retention”, Automation and Remote Control, 2008, no. 1, 30–38 (in Russ.) | Zbl

[10] V. P. Zhukov, “Reduction of Stability Study of Nonlinear Dynamic Systems by the Second Lyapunov Method”, Automation and Remote Control, 2005, no. 12, 51–64 (in Russ.) | Zbl

[11] I. T. Borisenok, M. V. Shamolin, “Solving the Problem of Differential Diagnostics by the Method of Statistical Tests”, Moscow University Mechanics Bulletin, 2001, no. 1, 29–31 (in Russ.) | MR | Zbl

[12] A. Beck, M. Teboulle, “Mirror Descent and Nonlinear Projected Subgradient Methods for Convex Optimization”, Oper. Res. Lett., 31:3 (2003), 167–175 https://web.iem.technion.ac.il/ | MR | Zbl

[13] A. Ben-Tal, T. Margalit, A. Nemirovski, “The Ordered Subsets Mirror Descent Optimization Method with Applications to Tomography”, SIAM J. Optim., 12:1 (2001), 79–108 | MR | Zbl

[14] W. Su, S. Boyd, E. Candes, “A Differential Equation for Modeling Nesterov's Accelerated Gradient Method: Theory and Insights”, J. Machine Learning Res., 153:17 (2016), 1–43 | MR

[15] M. V. Shamolin, “Diagnostics of Gyro-Stabilized Platform, Included in the Aircraft Motion Control System”, Electronic Modeling, 33:3 (2011), 121–126 (in Russ.)

[16] M. V. Shamolin, “Diagnostics of Aircraft Motion in Planning Descent Mode”, Electronic Modeling, 32:5 (2010), 31–44 (in Russ.)

[17] W. H. Fleming, “Optimal Control of Partially Observable Diffusions”, SIAM J. Control, 6:2 (1968), 194–214 | MR | Zbl

[18] D. H. Choi, S. H. Kim, D. K. Sung, “Energy-efficient Maneuvering and Communication of a Single UAV-based Relay”, IEEE Trans. Aerosp. Electron. Syst., 50:3 (2014), 2119–2326

[19] D. T. Ho, E. I. Grotli, P. B. Sujit, T. A. Johansen, J. B. Sousa, “Optimization of Wireless Sensor Network and UAV Data Acquisition”, J. Intelligent Robot. Syst., 78:1 (2015), 159–179

[20] C. Ceci, A. Gerardi, P. Tardelli, “Existence of Optimal Controls for Partially Observed Jump Processes”, Acta Appl. Math., 74:2 (2002), 155–175 | MR | Zbl

[21] U. Rieder, J. Winter, “Optimal Control of Markovian Jump Processes with Partial Information and Applications to a Parallel Queueing Model”, Math. Meth. Oper. Res., 70 (2009), 567–596 | MR | Zbl

[22] M. Chiang, C. W. Tan, P. Hande, T. Lan, “Power control in wireless cellular networks”, Foundat. Trends Networking, 2:4 (2008), 381–533

[23] E. Altman, K. Avrachenkov, I. Menache, G. Miller, B. J. Prabhu, A. Shwartz, “Power control in wireless cellular networks”, IEEE Trans. Autom. Contr., 54:10 (2009), 2328–2340 | MR | Zbl

[24] R. J. Ober, “Balanced Parameterization of Classes of Linear Systems”, SIAM J. Control Optimization, 29:6 (1991), 1251–1287 | MR | Zbl

[25] R. J. Ober, D. McFarlane, “Balanced Canonical Forms for Minimal Systems: A normalized Coprime Factor Approach”, Linear Algebra Appl., 122–124 (1989), 23–64 | MR | Zbl

[26] A. C. Antoulas, D. C. Sorensen, Y. Zhou, “On the Decay Rate of Hankel Singular Values and Related Issues”, Systems Contr. Lett., 46 (2002), 323–342 | MR | Zbl

[27] D. A. Wilson, “The Hankel Operator and its Induced Norms”, Int. J. Contr., 42 (1985), 65–70 | MR | Zbl

[28] B. D. O. Anderson, E. I. Jury, M. Mansour, “Schwarz Matrix Properties for Continuous and Discrete Time Systems”, Int. J. Contr., 3 (1976), 1–16 | MR

[29] R. Peeters, B. Hanzon, M. Olivi, “Canonical Lossless State-Space Systems: Staircase Forms and the Schur Algorithm”, Lin. Alg. Appl., 425:2–3 (2007), 404–433 | MR | Zbl

[30] X. Tang, S. Wang, “A Low Hardware Overhead Self-diagnosis Technique Using ReedSolomon Codes for Self-repairing Chips”, IEEE Trans. Comput., 59:10 (2010), 1309–1319 | MR | Zbl