The correctness of a Dirichlet type problem for the degenerate multidimensional hyperbolic-elliptic equations
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 25 (2019) no. 1, pp. 7-20 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Multidimensional hyperbolic-elliptic equations describe important physical, astronomical, and geometric processes. It is known that the oscillations of elastic membranes in space according to Hamilton’s prism can be modeled by multidimensional degenerate hyperbolic equations. Assuming that the membrane is in equilibrium in half the bend, from Hamilton’s principle we also obtain degenerate elliptic equations. Consequently, vibrations of elastic membranes in space can be modeled as multidimensional degenerate hyperbolic-elliptic equations. When studying these applications, it is necessary to obtain an explicit representation of the investigated boundary value problems. The author has previously studied the Dirichlet problem for multidimensional hyperbolic-elliptic equations, where the unique solvability of this problem is shown, which essentially depends on the height of the cylindrical domain under consideration. However, the Dirichlet problem in a cylindrical domain for multidimensional degenerate hyperbolic-elliptic equations has not been studied previously. In this paper, the Dirichlet problem is studied for a class of degenerate multidimensional hyperbolic-elliptic equations. Moreover, the existence and uniqueness of the solution depends on the height of the considered cylindrical domain and on the degeneration of the equation. A uniqueness criterion for a regular solution is also obtained.
Keywords: correctness, Dirichlet problem, cylindrical domain, degeneration of Bessel function, criteria.
@article{VSGU_2019_25_1_a0,
     author = {S. A. Aldashev},
     title = {The correctness of a {Dirichlet} type problem for the degenerate multidimensional hyperbolic-elliptic equations},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {7--20},
     year = {2019},
     volume = {25},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2019_25_1_a0/}
}
TY  - JOUR
AU  - S. A. Aldashev
TI  - The correctness of a Dirichlet type problem for the degenerate multidimensional hyperbolic-elliptic equations
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2019
SP  - 7
EP  - 20
VL  - 25
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSGU_2019_25_1_a0/
LA  - ru
ID  - VSGU_2019_25_1_a0
ER  - 
%0 Journal Article
%A S. A. Aldashev
%T The correctness of a Dirichlet type problem for the degenerate multidimensional hyperbolic-elliptic equations
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2019
%P 7-20
%V 25
%N 1
%U http://geodesic.mathdoc.fr/item/VSGU_2019_25_1_a0/
%G ru
%F VSGU_2019_25_1_a0
S. A. Aldashev. The correctness of a Dirichlet type problem for the degenerate multidimensional hyperbolic-elliptic equations. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 25 (2019) no. 1, pp. 7-20. http://geodesic.mathdoc.fr/item/VSGU_2019_25_1_a0/

[1] B. V. Shabbat, “Examples of solving the Dirichlet problem for a mixed-type equation”, DAN SSSR, 112:3 (1957), 386–389 | Zbl

[2] A. V. Bitsadze, “The incorrectness of the Dirichlet problem for equations of mixed type in mixed domains”, DAN SSSR, 122:2 (1958), 167–170 ; 333:1, 396–407 | Zbl

[3] A. P. Soldiers, “Problems of Dirichlet type for the Lavrent'ev-Bitsadze equation”, Dokl. RAS, 332:6 (1993), 696–698 ; 333:1, 396–407 | Zbl

[4] A. M. Nakhushev, Tasks with an offset for the partial differential equation, Nauka, M., 2006, 287 pp.

[5] K. B., “Sabitov Dirichlet problem for a mixed-type equation in a rectangular region”, Dokl. RAS, 413:1 (2007), 23–26 | Zbl

[6] A. M. Nakhushev, “A criterion for the uniqueness of the Dirichlet problem for equations of mixed type in a cylindrical domain”, Differ. equations, 6:1 (1970), 190–191 | MR | Zbl

[7] S. G. Mikhlin, Multidimensional singular integrals and integral equations, Fizmatgiz, M., 1962, 254 pp.

[8] S. A. Aldashev, “The correctness of the Dirichlet problem in a cylindrical domain for one class of multidimensional hyperbolic-elliptic equations”, Nonlinear oscillations, 16:4 (2013), 435–451

[9] S. A. Aldashev, Boundary value problems for multidimensional hyperbolic and mixed equations, Gylym, Almaty, 1994, 170 pp.

[10] S. A. Aldashev, Degenerate multidimensional hyperbolic equations, ZKATU, Oral, 2007, 139 pp.

[11] E. Kamke, Handbook of ordinary differential equations, Nauka, M., 1965, 703 pp.

[12] A. M. Nakhushev, Equations of mathematical biology, Higher school, M., 1985, 301 pp.

[13] G. Bateman, A. Erdeyi, Higher Transcendental Functions, v. 2, Nauka, M., 1974, 295 pp.

[14] A. N. Kolmogorov, S. V. Fomin, Elements of the theory of functions and functional analysis, Nauka, M., 1976, 543 pp.

[15] A. N. Tikhonov, A. A. Samara, The equations of mathematical physics, Science, M., 1966, 724 pp. | MR

[16] S. A. Aldashev, “The correctness of the Dirichlet and Poincaré problems in a cylindrical domain for degenerate multidimensional hyperbolic equations with the Gellerstedt operator”, Nonlinear oscillations, 18:1 (2015), 10–19

[17] V. Smirnov, The course of higher mathematics, Ch. 2, v. 4, Science, M., 1981, 550 pp.

[18] L. Bers, F. John, M. Schechter, Partial Differential Equations, Mir, M., 1966