Mots-clés : Andronov–Hopf bifurcation
@article{VSGU_2018_24_4_a7,
author = {A. Yu. Perevaryukha},
title = {Simulation of fluctuations of aggressive alien species in continuous models with independent regulation},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {48--58},
year = {2018},
volume = {24},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2018_24_4_a7/}
}
TY - JOUR AU - A. Yu. Perevaryukha TI - Simulation of fluctuations of aggressive alien species in continuous models with independent regulation JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2018 SP - 48 EP - 58 VL - 24 IS - 4 UR - http://geodesic.mathdoc.fr/item/VSGU_2018_24_4_a7/ LA - ru ID - VSGU_2018_24_4_a7 ER -
%0 Journal Article %A A. Yu. Perevaryukha %T Simulation of fluctuations of aggressive alien species in continuous models with independent regulation %J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ %D 2018 %P 48-58 %V 24 %N 4 %U http://geodesic.mathdoc.fr/item/VSGU_2018_24_4_a7/ %G ru %F VSGU_2018_24_4_a7
A. Yu. Perevaryukha. Simulation of fluctuations of aggressive alien species in continuous models with independent regulation. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 24 (2018) no. 4, pp. 48-58. http://geodesic.mathdoc.fr/item/VSGU_2018_24_4_a7/
[1] Perevaryukha A. Yu., “Nonlinear model of overfishing of Volga populations based on a cognitive graph of interaction of environmental factors”, Bulletin of the Samara University. Natural science series, 2016, no. 1–2, 92–106 (in Russian)
[2] Perevaryukha A. Y., “Graph model of the interaction of anthropogenic and biotic factors for the productivity of the Caspian Sea”, Vestnik of Samara University. Natural Science Series, 2015, no. 10, 181–198 (in Russian)
[3] Panina N. B., Belov A. N., “Efficiency of entomophages of an unpaired silkworm in complex foci of phytophagous insects in the oak forests of the Volga Upland”, Forestry information, 2012, no. 1, 26–34 (in Russian)
[4] Arnold V. I., Geometric methods in the theory of ordinary differential equations, Izhevsk, 2000, 400 pp. (in Russian)
[5] Singer D., “Stable orbits and bifurcations of the maps on the interval”, SIAM journal of applied math., 35 (1978), 260–268 | DOI | MR
[6] Farmer J., Ott E., Yorke J., “The dimension of chaotic attractors”, Physica D, 7 (1983), 153–170 | DOI | MR
[7] Hutchinson G. E., An Introduction to Population Ecology, Yale University Press, New Haven, 1978, 125 pp. | MR | Zbl
[8] Arino J., “An alternative formulation for a delayed logistic equation”, Journal of Theoretical Biology, 241 (2006), 109–119 | DOI | MR
[9] Bazykin A., “Theoretical and mathematical ecology: dangerous boundaries and criteria of approash them”, Mathematics and Modelling, eds. A. Bazykin, Yu. Zarkhin, Nova Sci. Publishers, Inc, 1993, 321–328 | MR
[10] Frolov A. N., “The beet webworm Loxostege sticticalis l. (Lepidoptera, Crambidae) in the focus of agricultural entomology objectives: The periodicity of pest outbreaks”, Entomological Review, 2015, no. 2, 147–156 | DOI
[11] Gopalsamy K., “Global stability in the Delay-Logistic Equation with discrete delays”, Houston J. Math., 16 (1990), 347–356 | MR | Zbl
[12] Arino O., Hbid M. L., Delay Differential Equations and Applications, Springer, Dordrecht, 2006, 581 pp. https://link.springer.com/book/10.1007/1-4020-3647-7 | MR
[13] Krebs C. J., Myers J. H., “Population Cycles in Small Mammals”, Advances in Ecological Research, 8 (1974), 267–399 | DOI
[14] Baker T. H., Paul A. H., “Computing stability regions Runge-Kutta methods for delay differential equations”, IMA Journal of Numerical Analysis, 14 (1994), 347–362 | DOI | MR | Zbl
[15] Perevaryukha A. Y., “Uncertainty of asymptotic dynamics in bioresource management simulation”, Journal of Computer and Systems Sciences International, 50:3 (2011), 491–498 | DOI | MR | Zbl
[16] Ruan S., “Delay Differential Equations in Single Species Dynamics”, Delay Differential Equations and Applications, Springer, Berlin, 2006, 477–517 | DOI | MR