Parametrization of invariant manifolds of slow motions
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 24 (2018) no. 4, pp. 33-40

Voir la notice de l'article provenant de la source Math-Net.Ru

The method of integral manifolds is used to study the multidimensional systems of differential equations. This approach allows to solve an important problem of order reduction of differential systems. If a slow invariant manifold cannot be described explicitly then its parametrization is used for the system order reduction. In this case, either a part of the fast variables, or all fast variables, supplemented by a certain number of slow variables, can play a role of the parameters.
Mots-clés : singular perturbations, fast variables
Keywords: integral manifold, order reduction, asymptotic expansion, parametrization, differential equations, slow variables.
@article{VSGU_2018_24_4_a5,
     author = {V. A. Sobolev and E. A. Shchepakina and E. A. Tropkina},
     title = {Parametrization of invariant manifolds of slow motions},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {33--40},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2018_24_4_a5/}
}
TY  - JOUR
AU  - V. A. Sobolev
AU  - E. A. Shchepakina
AU  - E. A. Tropkina
TI  - Parametrization of invariant manifolds of slow motions
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2018
SP  - 33
EP  - 40
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGU_2018_24_4_a5/
LA  - ru
ID  - VSGU_2018_24_4_a5
ER  - 
%0 Journal Article
%A V. A. Sobolev
%A E. A. Shchepakina
%A E. A. Tropkina
%T Parametrization of invariant manifolds of slow motions
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2018
%P 33-40
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGU_2018_24_4_a5/
%G ru
%F VSGU_2018_24_4_a5
V. A. Sobolev; E. A. Shchepakina; E. A. Tropkina. Parametrization of invariant manifolds of slow motions. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 24 (2018) no. 4, pp. 33-40. http://geodesic.mathdoc.fr/item/VSGU_2018_24_4_a5/