Parametrization of invariant manifolds of slow motions
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 24 (2018) no. 4, pp. 33-40 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The method of integral manifolds is used to study the multidimensional systems of differential equations. This approach allows to solve an important problem of order reduction of differential systems. If a slow invariant manifold cannot be described explicitly then its parametrization is used for the system order reduction. In this case, either a part of the fast variables, or all fast variables, supplemented by a certain number of slow variables, can play a role of the parameters.
Mots-clés : singular perturbations, fast variables
Keywords: integral manifold, order reduction, asymptotic expansion, parametrization, differential equations, slow variables.
@article{VSGU_2018_24_4_a5,
     author = {V. A. Sobolev and E. A. Shchepakina and E. A. Tropkina},
     title = {Parametrization of invariant manifolds of slow motions},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {33--40},
     year = {2018},
     volume = {24},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2018_24_4_a5/}
}
TY  - JOUR
AU  - V. A. Sobolev
AU  - E. A. Shchepakina
AU  - E. A. Tropkina
TI  - Parametrization of invariant manifolds of slow motions
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2018
SP  - 33
EP  - 40
VL  - 24
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSGU_2018_24_4_a5/
LA  - ru
ID  - VSGU_2018_24_4_a5
ER  - 
%0 Journal Article
%A V. A. Sobolev
%A E. A. Shchepakina
%A E. A. Tropkina
%T Parametrization of invariant manifolds of slow motions
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2018
%P 33-40
%V 24
%N 4
%U http://geodesic.mathdoc.fr/item/VSGU_2018_24_4_a5/
%G ru
%F VSGU_2018_24_4_a5
V. A. Sobolev; E. A. Shchepakina; E. A. Tropkina. Parametrization of invariant manifolds of slow motions. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 24 (2018) no. 4, pp. 33-40. http://geodesic.mathdoc.fr/item/VSGU_2018_24_4_a5/

[1] Sobolev V. A., Shchepakina E. A., Reduction of Models and Critical Phenomena in Macrokinetics, Fizmatlit, M., 2010, 319 pp. (in Russian)

[2] Strygin V. V., Sobolev V. A., “Effect of geometric and kinetic parameters and energy dissipation on orientation stability of satellites with double spin”, Cosmic Research, 14:3 (1976), 331–335

[3] Kononenko L. I., Sobolev V. A., “Asymptotic expansion of slow integral manifolds”, Siberian Mathematical Journal, 35:6 (1994), 1119–1132 | DOI | MR | Zbl

[4] Vasilieva A. B., Butuzov V. F., Asymptotic Methods in the Theory of Singular Perturbations, Vyssh. shk., M., 1990, 208 pp. (in Russian) | MR

[5] Bogolyubov N. N., Mitropolsky Yu. A., “The Method of Integral Manifolds in Nonlinear Mechanics”, Contributions to Differential Equations, 1963, no. 2, 123–196 | MR | Zbl

[6] Sobolev V. A., “Decomposition of control systems with singular perturbations”, Proc. 10th Congr. IFAC (Munich, 1987), v. 8, 172–176

[7] Shchepakina E., Sobolev V., Mortell M. P., Singular Perturbations. Introduction to System Order Reduction Methods with Applications, Lect. Notes in Math., 2114, Springer, Cham–Berlin–Heidelber–London, 2014 | DOI | MR | Zbl

[8] Sobolev V. A., Tropkina E. A., “Asymptotic expansions of slow invariant manifolds and reduction of chemical kinetics models”, Computational Mathematics and Mathematical Physics, 52:1 (2012), 75–89 | DOI | MR | Zbl

[9] Tropkina E. A., “Iterative Method for Approxinate Construction of Slow Integral Manifolds”, Vestnik of Samara State University. Natural Science Series, 2010, no. 4(78), 78–88 (in Russian)

[10] Tropkina E. A., “Parameterization of slow invariant manifolds in the model of the spread of malaria”, Vestnik of Samara State University. Natural Science Series, 2012, no. 6(97), 66–74 (in Russian) | Zbl