Calculation of the number of palindroms in a binary system
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 24 (2018) no. 4, pp. 29-32
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The work deals with symmetric numbers in the binary number system, called palindromes. The aim of the work is to derive the dependence of the number of palindromes on their digit. The dependences of the number of palindromes for even and odd digits are obtained separately.
Mots-clés : palindromes, formula.
Keywords: binary number system, number theory
@article{VSGU_2018_24_4_a4,
     author = {V. V. Lyubimov and R. V. Melikdzhanyan},
     title = {Calculation of the number of palindroms in a binary system},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {29--32},
     year = {2018},
     volume = {24},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2018_24_4_a4/}
}
TY  - JOUR
AU  - V. V. Lyubimov
AU  - R. V. Melikdzhanyan
TI  - Calculation of the number of palindroms in a binary system
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2018
SP  - 29
EP  - 32
VL  - 24
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSGU_2018_24_4_a4/
LA  - ru
ID  - VSGU_2018_24_4_a4
ER  - 
%0 Journal Article
%A V. V. Lyubimov
%A R. V. Melikdzhanyan
%T Calculation of the number of palindroms in a binary system
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2018
%P 29-32
%V 24
%N 4
%U http://geodesic.mathdoc.fr/item/VSGU_2018_24_4_a4/
%G ru
%F VSGU_2018_24_4_a4
V. V. Lyubimov; R. V. Melikdzhanyan. Calculation of the number of palindroms in a binary system. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 24 (2018) no. 4, pp. 29-32. http://geodesic.mathdoc.fr/item/VSGU_2018_24_4_a4/

[1] Nishiyama Y., “Numerical palindromes and the 196 problem”, IJPAM, 80:3 (2012), 375–384 https://ijpam.eu/contents/2012-80-3/9/9.pdf | Zbl

[2] Gundina M. A., Gusachek D. A., “Application of numerical palindromes”, IX Masherovskie readings: materials of the International research and practical conference of students, postgraduate students and young scientists (Vitebsk, 25 September, 2015), Izd-vo VGU im. P.M. Masherova, Vitebsk, 2015, 13–15 (in Russian)

[3] Gardner M., This left, right world, Mir, M., 1967, 267 pp. (in Russian)

[4] Iannazzo B., Meini B., “Palindromic matrix polynomials, matrix functions and integral representations”, Linear Algebra Appl., 434:1 (2011), 174–184 | DOI | MR | Zbl

[5] D.S. Mackey et al., “Structured polynomial eigenvalue problems: Good vibrations from good linearizations”, SIAM J. Matrix Anal. Appl., 28 (2006), 1029–1051 http://eprints.maths.manchester.ac.uk/id/eprint/190 | DOI | MR | Zbl

[6] Gemignani L., Noferini V., “The Ehrlich-Aberth method for palindromic matrix polynomials represented in the Dickson basis”, Linear Algebra Appl., 438 (2013), 1645–1666 | DOI | MR | Zbl