About one task with a nonlocal condition on time variable for the hyperbolic equation
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 24 (2018) no. 4, pp. 24-28 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article, boundary value problem for hyperbolic equation with nonlocal initial data in integral form is considered. The main result is that the nonlocal problem is equivalent to the classical boundary value problem for a loaded equation. This fact helps to prove the uniqueness of a solution to the problem.
Keywords: hyperbolic equation, second kind integral condition.
Mots-clés : nonlocal conditions
@article{VSGU_2018_24_4_a3,
     author = {S. V. Kirichenko},
     title = {About one task with a nonlocal condition on time variable for the hyperbolic equation},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {24--28},
     year = {2018},
     volume = {24},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2018_24_4_a3/}
}
TY  - JOUR
AU  - S. V. Kirichenko
TI  - About one task with a nonlocal condition on time variable for the hyperbolic equation
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2018
SP  - 24
EP  - 28
VL  - 24
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSGU_2018_24_4_a3/
LA  - ru
ID  - VSGU_2018_24_4_a3
ER  - 
%0 Journal Article
%A S. V. Kirichenko
%T About one task with a nonlocal condition on time variable for the hyperbolic equation
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2018
%P 24-28
%V 24
%N 4
%U http://geodesic.mathdoc.fr/item/VSGU_2018_24_4_a3/
%G ru
%F VSGU_2018_24_4_a3
S. V. Kirichenko. About one task with a nonlocal condition on time variable for the hyperbolic equation. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 24 (2018) no. 4, pp. 24-28. http://geodesic.mathdoc.fr/item/VSGU_2018_24_4_a3/

[1] Cannon J. R., “The solution of the heat equation subject to the specification of energy”, Quart. Appl. Math., 21:2 (1963), 155–160 https://www.jstor.org/stable/43635292 | DOI | MR

[2] Gushchin A. K., Mihailov V. P., “About a solubility of nonlocal tasks for an elliptical equation of the second order”, Russian Academy of Sciences. Sbornik: Mathematics, 81:1 (1995), 101–136 | DOI | MR

[3] Skubachevsky A. L., “Nonclassical boundary value problems”, Journal of Mathematical Sciences, 155:2 (2008), 199–334 | DOI | MR

[4] Gordeziani D. G., Avalishvili G. A., “Solutions of Nonlocal Problems for One-Dimensional Oscillations of the Medium”, Mathematical Models and Computer Simulations, 12:1 (2000), 94–103 | MR | Zbl

[5] Kozhanov A. I., Pulkina L. S., “On the Solvability of Boundary Value Problems with a Nonlocal Boundary Condition of Integral Form for Multidimentional Hyperbolic Equations”, Differential Equations, 42:9 (2006), 1233–1246 | DOI | MR | MR | Zbl

[6] Pulkina L. S., “Boundary value problems for a hyperbolic equation with nonlocal conditions of the I and II kind”, Russian Mathematics (Iz.VUZ), 56:4 (2012), 74–83 | MR | Zbl

[7] Samarskii A. A., “About some problems of modern theory of differential equations”, Differential Equations, 16:11 (1980), 1925–1935 | MR

[8] Zdeněk P. Bažant, Milan Jirásek, “Nonlocal Integral Formulation of Plasticity And Damage: Survey of Progress”, American Society of Civil Engineers. Journal of Engineering Mechanics, 2002, 1119–1149 https://ascelibrary.org/doi/abs/10.1061/

[9] Ladyzhenskaya O. A., Boundary value problems of mathematical physics, Nauka, M., 1973, 407 pp.