Nonlocal problems for one-dimensional hyperbolic equation
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 24 (2018) no. 4, pp. 19-23
Voir la notice de l'article provenant de la source Math-Net.Ru
This article discusses some nonlocal problems and methods of proving solvability of them. We show
that choosing of effective method depends on the form of nonlocal conditions.
One of these methods is based on
reducing nonlocal problem to a boundary-value problem
for a loaded equation and allows us to use many well-known methods of
justification solvability.
In the article, we consider the problem with nonlocal integral conditions for a one-dimensional
hyperbolic
equation and prove the equivalence to a problem with classical boundary conditions for
a loaded equation.
Keywords:
nonlocal problem, integral condition, hyperbolic equation, loaded equation.
@article{VSGU_2018_24_4_a2,
author = {V. A. Kirichek},
title = {Nonlocal problems for one-dimensional hyperbolic equation},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {19--23},
publisher = {mathdoc},
volume = {24},
number = {4},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2018_24_4_a2/}
}
TY - JOUR AU - V. A. Kirichek TI - Nonlocal problems for one-dimensional hyperbolic equation JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2018 SP - 19 EP - 23 VL - 24 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGU_2018_24_4_a2/ LA - ru ID - VSGU_2018_24_4_a2 ER -
V. A. Kirichek. Nonlocal problems for one-dimensional hyperbolic equation. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 24 (2018) no. 4, pp. 19-23. http://geodesic.mathdoc.fr/item/VSGU_2018_24_4_a2/