MacKay functions in spaces of higher levels
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 24 (2018) no. 4, pp. 13-18 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the article we prove structure theorems for spaces of cusps forms with the levels that are divisible by the minimal levels for MakKay functions. There are 28 eta–products with multiplicative Fourier coefficients. They are called MacKay functions. Let $f(z)$ be such function. It belongs to the space $S_l(\Gamma_0(N),\chi)$ for a minimal level $N.$ In each space of the level $N$ there is the exact cutting by the function $f(z).$ Also the function $f(z)$ is a cusp form for multiple levels. In this case the exact cutting doesn't take place and the additional spaces exist. In this article we find the conditions for the divisor of functions that are divisible by $f(z)$ and we study the structure of additional spaces. Dimensions of the spaces are calculated by the Cohen–Oesterle formula, the orders in cusps are calculated by the Biagioli formula.
Keywords: modular forms, cusp forms, Dedekind eta-function, cusps, Eisenstein series, structure theorems, Cohen–Oesterle formula Biagioli formula.
@article{VSGU_2018_24_4_a1,
     author = {G. V. Voskresenskaya},
     title = {MacKay functions in spaces of higher levels},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {13--18},
     year = {2018},
     volume = {24},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2018_24_4_a1/}
}
TY  - JOUR
AU  - G. V. Voskresenskaya
TI  - MacKay functions in spaces of higher levels
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2018
SP  - 13
EP  - 18
VL  - 24
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSGU_2018_24_4_a1/
LA  - ru
ID  - VSGU_2018_24_4_a1
ER  - 
%0 Journal Article
%A G. V. Voskresenskaya
%T MacKay functions in spaces of higher levels
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2018
%P 13-18
%V 24
%N 4
%U http://geodesic.mathdoc.fr/item/VSGU_2018_24_4_a1/
%G ru
%F VSGU_2018_24_4_a1
G. V. Voskresenskaya. MacKay functions in spaces of higher levels. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 24 (2018) no. 4, pp. 13-18. http://geodesic.mathdoc.fr/item/VSGU_2018_24_4_a1/

[1] Ono K., The web of modularity: arithmetic of the coefficients of modular forms and q-series, A.M.S., Providence, 2004, 216 pp. | MR | Zbl

[2] Koblitz N., Introduction in elliptic curves and modular forms, Mir, M., 1988, 320 pp. (in Russian)

[3] Knapp A., Elliptic curves, Faktorial Press, M., 2004, 488 pp. (in Russian)

[4] Voskresenskaya G. V., “Exact cutting in spaces of cusp forms with characters”, Mathematical Notes, 103:6 (2018), 881–891 | DOI | MR | Zbl

[5] Voskresenskaya G. V., “Dedekind $\eta$-function in modern research”, Journal of Mathematical Sciences (New York), 235:6 (2018), 788–833 | DOI | MR

[6] Gordon B., Sinor D., “Multiplicative properties of $\eta$-products”, L.N.M., 1395, 1987, 173–200 | MR

[7] Voskresenskaya G. V., “One special class of modular forms and group representations”, Journal de Theorie des Nombres de Bordeaux, 11 (1999), 247–262 http://www.numdam.org/article/JTNB_1999_11_1_247_0.pdf | DOI | Zbl

[8] Dummit D., Kisilevsky H., MasKay J., “Multiplicative products of $\eta-$ functions”, Contemp. Math., 45, 1985, 89–98 | DOI | MR | Zbl

[9] Cohen H., Oesterle J., “Dimensions des espaces de formes modulaires”, L.N.M., 627, 1976, 69–78 | MR

[10] Biagioli A. J. F., “The construction of modular forms as products of transforms of the Dedekind eta-function”, Acta Arithm., LIV:4 (1990), 273–300 | DOI | MR | Zbl