Problem with an integral condition for one-dimensional hyperbolic equation
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 24 (2018) no. 4, pp. 7-12 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we study a nonlocal problem with an integral condition for a one-dimensional hyperbolic equation arising in the study of vibrations of the rod. The conditions for the input data providing unambiguous solvability of the problem are obtained, the proof of the existence and uniqueness of the solution of the problem is carried out.
Keywords: hyperbolic equation, integral conditions, uniqueness of the solution, solvability of the problem.
Mots-clés : nonlocal proiblem
@article{VSGU_2018_24_4_a0,
     author = {A. V. Bogatov},
     title = {Problem with an integral condition for one-dimensional hyperbolic equation},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {7--12},
     year = {2018},
     volume = {24},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2018_24_4_a0/}
}
TY  - JOUR
AU  - A. V. Bogatov
TI  - Problem with an integral condition for one-dimensional hyperbolic equation
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2018
SP  - 7
EP  - 12
VL  - 24
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSGU_2018_24_4_a0/
LA  - ru
ID  - VSGU_2018_24_4_a0
ER  - 
%0 Journal Article
%A A. V. Bogatov
%T Problem with an integral condition for one-dimensional hyperbolic equation
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2018
%P 7-12
%V 24
%N 4
%U http://geodesic.mathdoc.fr/item/VSGU_2018_24_4_a0/
%G ru
%F VSGU_2018_24_4_a0
A. V. Bogatov. Problem with an integral condition for one-dimensional hyperbolic equation. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 24 (2018) no. 4, pp. 7-12. http://geodesic.mathdoc.fr/item/VSGU_2018_24_4_a0/

[1] Cannon J. R., “The solution of the heat equation subject to the specification of energy”, Quart. Appl. Math., 21 (1963) https://www.jstor.org/stable/43635292 | DOI

[2] Pulkina L. S., “Boundary value problems for the hyperbolic equation with nonlocal conditions of the I and II kind”, Russian Mathematics, 2012, no. 4, 74–83 (in Russian) | MR | Zbl

[3] Gordeziani D. G., Avalishvili G. A., “Solutions of nonlocal problems for one-dimensional oscillations”, Mathematical Models and Computer Simulations, 2000, no. 1, 94–103 (in Russian) | Zbl

[4] Avalishvili G., Avalishvili M., Gordeziani D., “On integral nonlocal boundary problems for some partial differential equations”, Bulletin of the Georgian National Academy of Sciences, 5:1 (2011), 31–37 http://science.org.ge/old/moambe/5-1/31-37 | MR | Zbl

[5] Pulkina L. S., Problems with non-classical conditions for hyperbolic equations, Izd-vo Samarskii universitet, Samara, 2012 (in Russian)

[6] Ilyin V. A., Tikhomirov V. V., “Wave equation with boundary control at two ends and the problem of complete calming of oscillatory process”, Differential Equations, 35:5 (1999), 697–708 | MR

[7] Ilyin V. A., Moiseev E. I., “On the uniqueness of solution of a mixed problem for the wave equation with nonlocal boundary conditions”, Differential Equations, 36:5 (2000), 728–733 | DOI | MR | Zbl

[8] Khazanov Kh.S., Mechanical vibrations of systems with distributed parameters, textbook, Samar. Gosud. Aerokosmich. Un-t, Samaara, 2002, 80 pp. (in Russian)

[9] Veits V. L., Dondoshanskiy V. K., Chiryaev V. I., Forced oscillations in metal-cutting machines, Mashgiz, M.–L., 1959, 288 pp. (in Russian)

[10] Nerubay M. S., Shtrikov B. L., Kalashnikov V. V., Ultrasonic machining and assembly, Samarskoe knizhnoe izd-vo, Samara, 1995, 191 pp. (in Russian)

[11] Beylin A. B., Pulkina L. S., “The problem of oscillations of a rod with an unknown condition for its attachment to a part of the boundary”, Vestnik of Samara University. Natural Science Series, 23:2 (2017), 7–14 (in Russian) | DOI | MR

[12] Fedotov I. A., Polyanin A. D., Shatalov M. Yu., “Theory of free and forced oscillations of a solid rod based on Rayleigh model”, Doklady Mathematics, 417:1 (2007), 56–61 (in Russian) | MR | Zbl

[13] Beylin A. B., Pulkina L. S., “Problem of longitudinal vibrations of a rod with dynamic boundary conditions”, Vestnik of Samara State University. Natural Science Series, 2014, no. 3(114), 9–19 (in Russian) | Zbl

[14] Beylin A. B., “Problem of longitudinal vibrations of an elastically fixed loaded rod”, Vestnik of Samara State Technical University. Technical Sciences Series, 20:2 (2016), 249–258 (in Russian) | DOI | Zbl

[15] Mikhlin S. G., Linear partial differential equations, Vysshaya shkola, M., 1977, 241 pp. (in Russian)