Boundary value problem for the Aller--Lykov moisture transport generalized equation with concentrated heat capacity
    
    
  
  
  
      
      
      
        
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 24 (2018) no. 3, pp. 23-29
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The article considers the Aller–Lykov equation with a Riemann–Liouville fractional time derivative, boundary conditions of the third kind and with the concentrated specific heat capacity on the boundary of the domain. Similar conditions arise in the case with a material of a higher thermal conductivity when solving a temperature problem for restricted environment with a heater as a concentrated heat capacity. Analogous conditions also arise in practices for regulating the water-salt regime of soils, when desalination of the upper layer is achieved by draining of a surface of the flooded for a while area. Using energy inequality methods, we obtained an a priori estimate in terms of the Riemann–Liouville fractional derivative, which revealed the uniqueness of the solution to the problem under consideration.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Mots-clés : 
Aller's–Lykov equation
Keywords: fractional derivative, nonlocal problem, moisture transfer generalized equation, concentrated heat capacity, inequalities method, a priori estimate, boundary value problem.
                    
                  
                
                
                Keywords: fractional derivative, nonlocal problem, moisture transfer generalized equation, concentrated heat capacity, inequalities method, a priori estimate, boundary value problem.
@article{VSGU_2018_24_3_a2,
     author = {M. A. Kerefov and F. M. Nakhusheva and S. Kh. Gekkieva},
     title = {Boundary value problem for the {Aller--Lykov} moisture transport generalized equation with concentrated heat capacity},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {23--29},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2018_24_3_a2/}
}
                      
                      
                    TY - JOUR AU - M. A. Kerefov AU - F. M. Nakhusheva AU - S. Kh. Gekkieva TI - Boundary value problem for the Aller--Lykov moisture transport generalized equation with concentrated heat capacity JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2018 SP - 23 EP - 29 VL - 24 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGU_2018_24_3_a2/ LA - ru ID - VSGU_2018_24_3_a2 ER -
%0 Journal Article %A M. A. Kerefov %A F. M. Nakhusheva %A S. Kh. Gekkieva %T Boundary value problem for the Aller--Lykov moisture transport generalized equation with concentrated heat capacity %J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ %D 2018 %P 23-29 %V 24 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGU_2018_24_3_a2/ %G ru %F VSGU_2018_24_3_a2
M. A. Kerefov; F. M. Nakhusheva; S. Kh. Gekkieva. Boundary value problem for the Aller--Lykov moisture transport generalized equation with concentrated heat capacity. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 24 (2018) no. 3, pp. 23-29. http://geodesic.mathdoc.fr/item/VSGU_2018_24_3_a2/
