On topological algebras of analytic functionals with a multiplication defined by translations
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 24 (2018) no. 3, pp. 14-22 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We define a multiplication — convolution in the dual of a countable inductive limit $E$ of weighted Fréchet spaces of entire functions of several variables. This algebra is isomorphic to the commutant of the system of partial derivatives in the algebra of all continuous linear operators in $E$. In the constructed algebra of analytic functionals in two pure cases a topology is defined. With this topology the mentioned algebra is topological and it is now topologically isomorphic to the considered commutant with its natural operator topology. It is proved that in this pure situations the present algebra has no zero divisors provided that polynomials are dense in $E$. We show that this condition is essential for the validity of the last statement.
Keywords: weighted space of entire functions, algebra of analytic functionals, topological algebra, convolution operator.
Mots-clés : communant
@article{VSGU_2018_24_3_a1,
     author = {O. A. Ivanova and S. N. Melikhov},
     title = {On topological algebras of analytic functionals with a multiplication defined by translations},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {14--22},
     year = {2018},
     volume = {24},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2018_24_3_a1/}
}
TY  - JOUR
AU  - O. A. Ivanova
AU  - S. N. Melikhov
TI  - On topological algebras of analytic functionals with a multiplication defined by translations
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2018
SP  - 14
EP  - 22
VL  - 24
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSGU_2018_24_3_a1/
LA  - ru
ID  - VSGU_2018_24_3_a1
ER  - 
%0 Journal Article
%A O. A. Ivanova
%A S. N. Melikhov
%T On topological algebras of analytic functionals with a multiplication defined by translations
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2018
%P 14-22
%V 24
%N 3
%U http://geodesic.mathdoc.fr/item/VSGU_2018_24_3_a1/
%G ru
%F VSGU_2018_24_3_a1
O. A. Ivanova; S. N. Melikhov. On topological algebras of analytic functionals with a multiplication defined by translations. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 24 (2018) no. 3, pp. 14-22. http://geodesic.mathdoc.fr/item/VSGU_2018_24_3_a1/

[1] Helemskii A.Ya., Homology of Banach and topological algebras, Izd-vo MGU, M., 1986, 288 pp. (in Russian) | MR

[2] Helemskii A.Ya., Banach and multi-normed algebras: general theory, presentations, gomologies, Nauka, M., 1989, 466 pp. (in Russian)

[3] Tkachenko V.A., “On operators that commute with generalized integration in spaces of analytic functionals”, Mathematical notes, 25:2 (1979), 141–146 | DOI | MR | Zbl | Zbl

[4] Tkachenko V.A., “Spectral decompositions in spaces of analytic functionals”, Mathematics of the USSR-Izvestiya, 14:3 (1980), 597–651 | DOI | MR | Zbl | Zbl

[5] Tkachenko V.A., “Spectral theory in spaces of analytic functionals for operator generated by multiplication by the independent variable”, Mathematics of the USSR-Sbornik, 40:3 (1981), 387–427 | DOI | MR | Zbl | Zbl

[6] Gurevich D.I., “Generalized displacement operators with a right infinitesimal Sturm–Liouville operator”, Mathematical Notes, 25:3 (1979), 208–215 | DOI | MR | Zbl

[7] Litvinov G.L., “On Laplace transform on Lie groups”, Functional Analysis and Its Applications, 6:1 (1972), 76–77 | DOI | MR | Zbl

[8] Rashevskii P.K., “Associative ultraenvelope of Lie algebra, its regular presentation and ideals”, Transactions of the Moscow Mathematical Society, 15, 1966, 3–54 (in Russian) | Zbl

[9] Ivanova O.A., Melikhov S.N., Melikhov Yu.N., “On the commutant of differentiation and translation operators in weighted spaces of entire functions”, Ufa Mathematical Journal, 9:3 (2017), 37–47 | DOI | MR

[10] Edwards R.E., Functional Analysis. Theory and Applications, Mir, M., 1969, 1072 pp. (in Russian)

[11] Schaefer H., Topological vector spaces, Mir, M., 1971, 360 pp. (in Russian)

[12] Meise R., Vogt D., Introduction to Functional Analysis, Clarendon, Oxford, 1997, 448 pp. (in English) | MR | Zbl

[13] Ivanova O.A., Melikhov S.N., “On Operators Commuting with a Pommiez type Operator in Weighted Spaces of Entire Functions”, St. Petersburg Mathematical Journal, 28:2 (2017), 209–224 | DOI

[14] Ivanova O. A., Melikhov S. N., “On the completeness of orbits of a Pommiez operator in weighted (LF)-spaces of entire functions”, Complex Analysis and Operator Theory, 11 (2017), 1407–1424 (in English) | DOI | MR | Zbl

[15] Korobeinik Yu.F., Morzhakov V.V., “General form of isomorphisms commuting with differentiation in spaces of entire functions of slow growth”, Mathematics of the USSR-Sbornik, 20:4 (1973), 493–505 | DOI | MR | Zbl

[16] Gorodentsev A.L., Algebra. Textbook for students of mathematics, v. 1, Izd-vo MTsNMO, M., 2013, 486 pp. (in Russian)

[17] Lelong P., Gruman L., Entire Functions of Several Complex Variables, Mir, M., 1989, 352 pp. (in Russian)

[18] Hörmander L., The Analysis of Linear Partial Differential Operators, v. I, Distribution Theory and Fourier Analysis, Mir, M., 1986, 464 pp. (in Russian)

[19] Martineau A., “Equations differentielles d'ordre infini”, Bull. Soc. Math. France, 95 (1967), 109–154 (in French) | DOI | MR | Zbl