On fractional differentiation
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 24 (2018) no. 3, pp. 7-13 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Due to the operation of fractional differentiation introduced with the help of Fourier integral, the results of calculating fractional derivatives for certain types of functions are given. Using the numerical method of integration, the values of fractional derivatives for arbitrary dimensionality $\varepsilon$, (where $\varepsilon$ is any number greater than zero) are calculated. It is proved that for integer values of $\varepsilon$ we obtain ordinary derivatives of the first, second and more high orders. As an example it was considered heat conduction equation of Fourier, where spatial derivation was realized with the use of fractional derivatives. Its solution is given by Fourier integral. Mmoreover, it was shown that integral went into the required results in special case of the whole $\varepsilon$ obtained in $n$-dimensional case, where $n = 1, 2\dots$, etc.
Keywords: fractional differentiation, Fourier integral, Riemann integral, heat conduction, measure.
Mots-clés : fractal, fractional dimension, Fourier equation
@article{VSGU_2018_24_3_a0,
     author = {S. O. Gladkov and S. B. Bogdanova},
     title = {On fractional differentiation},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {7--13},
     year = {2018},
     volume = {24},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2018_24_3_a0/}
}
TY  - JOUR
AU  - S. O. Gladkov
AU  - S. B. Bogdanova
TI  - On fractional differentiation
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2018
SP  - 7
EP  - 13
VL  - 24
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSGU_2018_24_3_a0/
LA  - ru
ID  - VSGU_2018_24_3_a0
ER  - 
%0 Journal Article
%A S. O. Gladkov
%A S. B. Bogdanova
%T On fractional differentiation
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2018
%P 7-13
%V 24
%N 3
%U http://geodesic.mathdoc.fr/item/VSGU_2018_24_3_a0/
%G ru
%F VSGU_2018_24_3_a0
S. O. Gladkov; S. B. Bogdanova. On fractional differentiation. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 24 (2018) no. 3, pp. 7-13. http://geodesic.mathdoc.fr/item/VSGU_2018_24_3_a0/

[1] Gladkov S.O., “On the theory of hydrodynamic phenomena in quasi-one-dimensional systems”, Technical Physics (Zhurnal Tekhnicheskoi Fiziki), 71:11 (2001), 130–132 (in Russian)

[2] Gladkov S.O., “On the theory of one-dimensional and quasi-one-dimensional thermal conductivity”, Technical Physics (Zhurnal Tekhnicheskoi Fiziki), 67:7 (1997), 8–12 (in Russian)

[3] Mandelbrot B., Fractal geometry of nature, RKhD, Izhevsk, 2002, 665 pp. (in Russian)

[4] Feder J., Fractals, Mir, M., 1991, 524 pp. (in Russian)

[5] Ivanova V.S. et al., Synergetics and fractals in materials science, Nauka, M., 1994, 383 pp. (in Russian) | MR

[6] Schroeder M., Fractals, Chaos, Power Laws, RKhD, Izhevsk, 2001, 528 pp. (in Russian)

[7] Gladkov S.O., Bogdanova S.B., “On the theory of longitudinal magnetic susceptibility of quasi-three-dimensional ferromagnetic dielectrics”, Solid-State Physics, 54:1 (2012), 70–73 (in Russian)

[8] Gladkov S.O., Bogdanova S.B., “On the Question of the Magnetic Susceptibility of Ferromagnetic Wires”, Izvestiya vuzov. Fizika, 57:4 (2014), 44–47 (in Russian) | MR

[9] Bagley R. L., Torvik P. J., “A Theoretical Basis for the Application of Fractional Calculus to Viscoelasticity”, Journal of Rheology, 27:201 (1983), 201–210 (in English) | DOI | Zbl

[10] R. L. Bagley, P. J. Torvik, “On the fractional calculus model of viscoelastic behavior”, Journal of Rheology, 30:1 (1986), 133–155 (in English) | DOI | Zbl

[11] Kochubey A.N., “Fractional order diffusion”, Differential Equations, 26:4 (1990), 660–670 (in Russian) | MR | Zbl

[12] Nigmatullin R.R., “Fractional integral and its physical interpretation”, Theoretical and Mathematical Physics, 90:3 (1992), 354–368 (in Russian) | MR | Zbl

[13] Nakhushev A.M., “Structural and qualitative properties of the operator, inverse to the operator of fractional integro-differentiation with fixed start and end”, Differential Equations, 36:8 (2000), 1093–1100 (in Russian) | DOI | MR | Zbl

[14] Samko S.G., Kilbas A.A., Marichev O.I., Integrals and derivatives of fractional order and some of their applications, Nauka i tekhnika, Minsk, 1987, 688 pp. (in Russian)

[15] Landau L.D., Lifshits Ye.M., Hydrodynamics, Nauka, M., 1986, 736 pp. (in Russian) | MR

[16] Gladkov S. O., Bogdanova S. B., “The heat-transfer theory for quasi-n-dimensional system”, Physica B: Condensed Matter, 405 (2010), 1973–1975 (in English) | DOI