Mots-clés : fractal, fractional dimension, Fourier equation
@article{VSGU_2018_24_3_a0,
author = {S. O. Gladkov and S. B. Bogdanova},
title = {On fractional differentiation},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {7--13},
year = {2018},
volume = {24},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2018_24_3_a0/}
}
S. O. Gladkov; S. B. Bogdanova. On fractional differentiation. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 24 (2018) no. 3, pp. 7-13. http://geodesic.mathdoc.fr/item/VSGU_2018_24_3_a0/
[1] Gladkov S.O., “On the theory of hydrodynamic phenomena in quasi-one-dimensional systems”, Technical Physics (Zhurnal Tekhnicheskoi Fiziki), 71:11 (2001), 130–132 (in Russian)
[2] Gladkov S.O., “On the theory of one-dimensional and quasi-one-dimensional thermal conductivity”, Technical Physics (Zhurnal Tekhnicheskoi Fiziki), 67:7 (1997), 8–12 (in Russian)
[3] Mandelbrot B., Fractal geometry of nature, RKhD, Izhevsk, 2002, 665 pp. (in Russian)
[4] Feder J., Fractals, Mir, M., 1991, 524 pp. (in Russian)
[5] Ivanova V.S. et al., Synergetics and fractals in materials science, Nauka, M., 1994, 383 pp. (in Russian) | MR
[6] Schroeder M., Fractals, Chaos, Power Laws, RKhD, Izhevsk, 2001, 528 pp. (in Russian)
[7] Gladkov S.O., Bogdanova S.B., “On the theory of longitudinal magnetic susceptibility of quasi-three-dimensional ferromagnetic dielectrics”, Solid-State Physics, 54:1 (2012), 70–73 (in Russian)
[8] Gladkov S.O., Bogdanova S.B., “On the Question of the Magnetic Susceptibility of Ferromagnetic Wires”, Izvestiya vuzov. Fizika, 57:4 (2014), 44–47 (in Russian) | MR
[9] Bagley R. L., Torvik P. J., “A Theoretical Basis for the Application of Fractional Calculus to Viscoelasticity”, Journal of Rheology, 27:201 (1983), 201–210 (in English) | DOI | Zbl
[10] R. L. Bagley, P. J. Torvik, “On the fractional calculus model of viscoelastic behavior”, Journal of Rheology, 30:1 (1986), 133–155 (in English) | DOI | Zbl
[11] Kochubey A.N., “Fractional order diffusion”, Differential Equations, 26:4 (1990), 660–670 (in Russian) | MR | Zbl
[12] Nigmatullin R.R., “Fractional integral and its physical interpretation”, Theoretical and Mathematical Physics, 90:3 (1992), 354–368 (in Russian) | MR | Zbl
[13] Nakhushev A.M., “Structural and qualitative properties of the operator, inverse to the operator of fractional integro-differentiation with fixed start and end”, Differential Equations, 36:8 (2000), 1093–1100 (in Russian) | DOI | MR | Zbl
[14] Samko S.G., Kilbas A.A., Marichev O.I., Integrals and derivatives of fractional order and some of their applications, Nauka i tekhnika, Minsk, 1987, 688 pp. (in Russian)
[15] Landau L.D., Lifshits Ye.M., Hydrodynamics, Nauka, M., 1986, 736 pp. (in Russian) | MR
[16] Gladkov S. O., Bogdanova S. B., “The heat-transfer theory for quasi-n-dimensional system”, Physica B: Condensed Matter, 405 (2010), 1973–1975 (in English) | DOI