Model of the drift-diffusion transport of charge carriers considering recombination in layers with fractal structure
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 24 (2018) no. 2, pp. 67-71 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article, we study a model of the drift-diffusion transport of charge carries in the layers of certain fractal structure. We take into account the process of recombination of charge carries. Solutions of model equations are found in the closed form.
Keywords: volume charge density, charge carrier recombination, Riemann–Liouville fractional derivative, Caputo fractional derivative
Mots-clés : drift-diffusion transport of charge carriers, fractal structure.
@article{VSGU_2018_24_2_a6,
     author = {M. O. Mamchuev},
     title = {Model of the drift-diffusion transport of charge carriers considering recombination in layers with fractal structure},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {67--71},
     year = {2018},
     volume = {24},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2018_24_2_a6/}
}
TY  - JOUR
AU  - M. O. Mamchuev
TI  - Model of the drift-diffusion transport of charge carriers considering recombination in layers with fractal structure
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2018
SP  - 67
EP  - 71
VL  - 24
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSGU_2018_24_2_a6/
LA  - ru
ID  - VSGU_2018_24_2_a6
ER  - 
%0 Journal Article
%A M. O. Mamchuev
%T Model of the drift-diffusion transport of charge carriers considering recombination in layers with fractal structure
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2018
%P 67-71
%V 24
%N 2
%U http://geodesic.mathdoc.fr/item/VSGU_2018_24_2_a6/
%G ru
%F VSGU_2018_24_2_a6
M. O. Mamchuev. Model of the drift-diffusion transport of charge carriers considering recombination in layers with fractal structure. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 24 (2018) no. 2, pp. 67-71. http://geodesic.mathdoc.fr/item/VSGU_2018_24_2_a6/

[1] Nakhushev A.M., Fractional calculus and its application, Fizmatlit, M., 2003, 272 pp. (in Russian)

[2] Uchaikin V.V., Method of fractional derivatives, Artishok, Ulyanovsk, 2008, 512 pp. (in Russian)

[3] Arkhincheev V.E., “On the charge relaxation of fractal structures”, JETP Letters, 52:7 (1990), 1007–1009 (in Russian)

[4] Nigmatullin R.R., “Fractional integral and its physical interpretation”, Theoretical and Mathematical Physics, 90:2 (1992), 354–367 (in Russian) | MR

[5] Chukbar K.V., “Stochastic Transport and Fractional Derivatives”, JETP, 108:5(11) (1995), 1875–1884 (in Russian)

[6] Archincheev V.E., “On the drift in a random walk along self-similar clusters”, JETP, 115:3 (1999), 1016–1023 (in Russian)

[7] Archincheev V.E., “Random walk along hierarchical comb-like structures”, JETP, 115:4 (1999), 1285–1296 (in Russian)

[8] Sibatov R.T., Uchaikin V.V., “Fractional-differential approach to the description of dispersion transport in semiconductors”, Physics-Uspekhi, 179:10 (2009), 1079–1104 (in Russian) | DOI

[9] Rekhviashvili S.Sh., Mamchuev Murat O., Mamchuev Mukhtar O., “Model of the diffusion-drift transport of charge carriers in layers with a fractal structure”, Physics of the Solid State, 58:4 (2016) (in Russian)

[10] Mamchuev Mukhtar O., “On the application of fractional integrodifferentiation in the modeling of diffusion-drift transport of charge carriers in layers with a fractal structure”, News of Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences, 2016, no. 4(72), 20–27 (in Russian)

[11] Mamchuev Murat O., Boundary value problems for equations and systems of partial differential equations of fractional order, Izd-vo KBNTs RAN, Nalchik, 2013, 200 pp. (in Russian)