@article{VSGU_2018_24_2_a5,
author = {L. N. Kosygina},
title = {Asymptotic representation of the stress field near the crack tip of an infinite plate with two semi-infinite symmetrical edge notches: theoretical study and computational experiment},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {55--66},
year = {2018},
volume = {24},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2018_24_2_a5/}
}
TY - JOUR AU - L. N. Kosygina TI - Asymptotic representation of the stress field near the crack tip of an infinite plate with two semi-infinite symmetrical edge notches: theoretical study and computational experiment JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2018 SP - 55 EP - 66 VL - 24 IS - 2 UR - http://geodesic.mathdoc.fr/item/VSGU_2018_24_2_a5/ LA - ru ID - VSGU_2018_24_2_a5 ER -
%0 Journal Article %A L. N. Kosygina %T Asymptotic representation of the stress field near the crack tip of an infinite plate with two semi-infinite symmetrical edge notches: theoretical study and computational experiment %J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ %D 2018 %P 55-66 %V 24 %N 2 %U http://geodesic.mathdoc.fr/item/VSGU_2018_24_2_a5/ %G ru %F VSGU_2018_24_2_a5
L. N. Kosygina. Asymptotic representation of the stress field near the crack tip of an infinite plate with two semi-infinite symmetrical edge notches: theoretical study and computational experiment. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 24 (2018) no. 2, pp. 55-66. http://geodesic.mathdoc.fr/item/VSGU_2018_24_2_a5/
[1] Stepanova L. V., Roslyakov P. S., “Multi-parameter description of the crack-tip stress field: Analytic determination of coefficients of crack-tip stress expansions in the vicinity of the crack tips of two finite cracks in an infinite plane medium”, International Journal of Solids and Structures, 100–101 (2016), 11–28 (in English) | DOI
[2] Stepanova L.V., Roslyakov P.S., “Complete asymptotic expansion of M. Williams at the tips of two collinear cracks of finite length in an infinite plate”, PNRPU Mechanics Bulletin, 2015, no. 4, 188–225 (in Russian) | DOI
[3] Stepanova L.V., Adylina E.M., “Stress-strain state in the vicinity of a crack tip under mixed mode loading”, Applied Mechanics and Technical Physics, 55:5 (2014), 885–895 | DOI | MR | Zbl
[4] Igonin S.A., Stepanova L.V., “Asymptotics of stress and continuity fields at the tip of a fatigue crack in a damaged medium in conditions of plane stress state”, Vestnik of Samara State University, 2013, no. 9-2, 97–108 (in Russian)
[5] Stepanova L. V., Roslyakov P. S., Gerasimova T., “Complete Williams Asymptotic expansion near the crack tips of collinear cracks of equal lengths in an infinite plane”, Solid State Phenomena, 258 (2017), 209–212 (in English) | DOI
[6] Stepanova L. V., Roslyakov P. S., Lomakov P. N., “A Photoelastic Study for Multiparametric Analysis of the Near Crack Tip Stress Field Under Mixed Mode Loading”, Procedia Structural Integrity, 2 (2016), 1797–1804 (in English) | DOI
[7] Gupta M., Alderliesten R. C., Benedictus R., “A review of T-stress and its effects in fracture mechanics”, Engineering Fracture Mechanics, 134 (2015), 218–241 (in English) | DOI
[8] Berto F., Lazzarin P., “On higher order terms in the crack tip stress field”, International Journal of Fracture, 161 (2010), 221–226 (in English) | DOI | Zbl
[9] Malikova L., Vesely V., “Significance of Higher-order Terms of the Williams Expansion for Plastic Zone Extent Estimation Demonstrated on a Mixed-mode Geometry”, Procedia Materials Science, 3 (2014), 1383–1388 (in English) | DOI
[10] Hello G., Tahar M. B., Roelandt J. M., “Analytical determination of coefficients in crack-tip stress expansions for a finite crack in an infinite plane medium”, International Journal of Solids and Structure, 49 (2012), 556–566 (in English) | DOI
[11] Hello G., Tahar M. B., “On the exactness of truncated crack-tip stress expansions”, Procedia Materials Science, 3 (2014), 750–755 (in English) | DOI
[12] Williams M. L., “Stress singularities resulting from various boundary conditions in angular corners of plates in tension”, Journal of Applied Mechanics, 19 (1952), 109–114 (in English) | DOI
[13] Williams M. L., “On the stress distribution at the base of a stationary crack”, Journal of Applied Mechanics, 24 (1957), 109–114 (in English) https://pdfs.semanticscholar.org/bf85/be73df7eb5449a8c856c5ec2fcc2487b04dd.pdf | Zbl
[14] Williams M. L., “The Stresses Around a Fault or Crack in Dissimilar Media”, Bulletin of the Seismological Society of America, 49:2 (1959), 199–204 (in English) https://www.researchgate.net/publication/248023746_The_Stresses_Around_a_Fault_or_a_Crack_in_Dissimilar_Media | MR
[15] Zak A. R., Williams M. L., “Crack Point Stress Singularities at a Bi-Material Interface”, Journal of Applied Mechanics, 30 (1963), 142–143 (in English) http://resolver.caltech.edu/CaltechAUTHORS:20140407-142817986 | DOI
[16] Stepanova L.V., Mathematical methods of fracture mechanics, Fizmatlit, M., 2009, 336 pp. (in Russian)
[17] Knott J.F., Basis of fracture mechanics, Metallurgiia, M., 1978, 256 pp. (in Russian)
[18] Broek B., Basis of fracture mechanics, Vyssh. shkola, M., 1980, 368 pp. (in Russian)
[19] Tada H., Paris P. C., Irwin G. R., The Stress Analysis of Cracks Handbook, ASME Press, NY, 2000, 678 pp. (in English) http://bookfi.net/book/1398445