Asymptotic representation of the stress field near the crack tip of an infinite plate with two semi-infinite symmetrical edge notches: theoretical study and computational experiment
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 24 (2018) no. 2, pp. 55-66 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article is aimed at theoretical study of the stress-strain state of an infinite plate with two semi-infinite symmetrical edge notches. The analytical solution is obtained by means of decomposition in the M. Williams series expansion and subsequent calculation of the amplitude coefficients of the expansion using the complex representation of stresses. An analysis of the multiparametric expansion of the stress field and a computational experiment with different number of terms are carried out. A comparison of the complex representation of the stress field with the asymptotic series of M. Williams obtained shows the need for an accurate estimate of the number of terms keeping in the expansion series depending on the distance from the crack tip.
Keywords: decomposition of M. Williams, stress-strain state of a plate with semi-infinite cuts, calculation of higher ordered terms of the asymptotic series of M. Williams.
@article{VSGU_2018_24_2_a5,
     author = {L. N. Kosygina},
     title = {Asymptotic representation of the stress field near the crack tip of an infinite plate with two semi-infinite symmetrical edge notches: theoretical study and computational experiment},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {55--66},
     year = {2018},
     volume = {24},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2018_24_2_a5/}
}
TY  - JOUR
AU  - L. N. Kosygina
TI  - Asymptotic representation of the stress field near the crack tip of an infinite plate with two semi-infinite symmetrical edge notches: theoretical study and computational experiment
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2018
SP  - 55
EP  - 66
VL  - 24
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSGU_2018_24_2_a5/
LA  - ru
ID  - VSGU_2018_24_2_a5
ER  - 
%0 Journal Article
%A L. N. Kosygina
%T Asymptotic representation of the stress field near the crack tip of an infinite plate with two semi-infinite symmetrical edge notches: theoretical study and computational experiment
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2018
%P 55-66
%V 24
%N 2
%U http://geodesic.mathdoc.fr/item/VSGU_2018_24_2_a5/
%G ru
%F VSGU_2018_24_2_a5
L. N. Kosygina. Asymptotic representation of the stress field near the crack tip of an infinite plate with two semi-infinite symmetrical edge notches: theoretical study and computational experiment. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 24 (2018) no. 2, pp. 55-66. http://geodesic.mathdoc.fr/item/VSGU_2018_24_2_a5/

[1] Stepanova L. V., Roslyakov P. S., “Multi-parameter description of the crack-tip stress field: Analytic determination of coefficients of crack-tip stress expansions in the vicinity of the crack tips of two finite cracks in an infinite plane medium”, International Journal of Solids and Structures, 100–101 (2016), 11–28 (in English) | DOI

[2] Stepanova L.V., Roslyakov P.S., “Complete asymptotic expansion of M. Williams at the tips of two collinear cracks of finite length in an infinite plate”, PNRPU Mechanics Bulletin, 2015, no. 4, 188–225 (in Russian) | DOI

[3] Stepanova L.V., Adylina E.M., “Stress-strain state in the vicinity of a crack tip under mixed mode loading”, Applied Mechanics and Technical Physics, 55:5 (2014), 885–895 | DOI | MR | Zbl

[4] Igonin S.A., Stepanova L.V., “Asymptotics of stress and continuity fields at the tip of a fatigue crack in a damaged medium in conditions of plane stress state”, Vestnik of Samara State University, 2013, no. 9-2, 97–108 (in Russian)

[5] Stepanova L. V., Roslyakov P. S., Gerasimova T., “Complete Williams Asymptotic expansion near the crack tips of collinear cracks of equal lengths in an infinite plane”, Solid State Phenomena, 258 (2017), 209–212 (in English) | DOI

[6] Stepanova L. V., Roslyakov P. S., Lomakov P. N., “A Photoelastic Study for Multiparametric Analysis of the Near Crack Tip Stress Field Under Mixed Mode Loading”, Procedia Structural Integrity, 2 (2016), 1797–1804 (in English) | DOI

[7] Gupta M., Alderliesten R. C., Benedictus R., “A review of T-stress and its effects in fracture mechanics”, Engineering Fracture Mechanics, 134 (2015), 218–241 (in English) | DOI

[8] Berto F., Lazzarin P., “On higher order terms in the crack tip stress field”, International Journal of Fracture, 161 (2010), 221–226 (in English) | DOI | Zbl

[9] Malikova L., Vesely V., “Significance of Higher-order Terms of the Williams Expansion for Plastic Zone Extent Estimation Demonstrated on a Mixed-mode Geometry”, Procedia Materials Science, 3 (2014), 1383–1388 (in English) | DOI

[10] Hello G., Tahar M. B., Roelandt J. M., “Analytical determination of coefficients in crack-tip stress expansions for a finite crack in an infinite plane medium”, International Journal of Solids and Structure, 49 (2012), 556–566 (in English) | DOI

[11] Hello G., Tahar M. B., “On the exactness of truncated crack-tip stress expansions”, Procedia Materials Science, 3 (2014), 750–755 (in English) | DOI

[12] Williams M. L., “Stress singularities resulting from various boundary conditions in angular corners of plates in tension”, Journal of Applied Mechanics, 19 (1952), 109–114 (in English) | DOI

[13] Williams M. L., “On the stress distribution at the base of a stationary crack”, Journal of Applied Mechanics, 24 (1957), 109–114 (in English) https://pdfs.semanticscholar.org/bf85/be73df7eb5449a8c856c5ec2fcc2487b04dd.pdf | Zbl

[14] Williams M. L., “The Stresses Around a Fault or Crack in Dissimilar Media”, Bulletin of the Seismological Society of America, 49:2 (1959), 199–204 (in English) https://www.researchgate.net/publication/248023746_The_Stresses_Around_a_Fault_or_a_Crack_in_Dissimilar_Media | MR

[15] Zak A. R., Williams M. L., “Crack Point Stress Singularities at a Bi-Material Interface”, Journal of Applied Mechanics, 30 (1963), 142–143 (in English) http://resolver.caltech.edu/CaltechAUTHORS:20140407-142817986 | DOI

[16] Stepanova L.V., Mathematical methods of fracture mechanics, Fizmatlit, M., 2009, 336 pp. (in Russian)

[17] Knott J.F., Basis of fracture mechanics, Metallurgiia, M., 1978, 256 pp. (in Russian)

[18] Broek B., Basis of fracture mechanics, Vyssh. shkola, M., 1980, 368 pp. (in Russian)

[19] Tada H., Paris P. C., Irwin G. R., The Stress Analysis of Cracks Handbook, ASME Press, NY, 2000, 678 pp. (in English) http://bookfi.net/book/1398445