Shape properties of the space of probability measures and its subspaces
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 24 (2018) no. 2, pp. 24-27 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article we consider covariant functors acting in the categorie of compacts, preserving the shapes of infinite compacts, $AN R$-systems, moving compacts, shape equivalence, homotopy equivalence and $A ( N ) SR$ properties of compacts. As well as shape properties of a compact space $X$ consisting of connectedness components $0$ of this compact $X$ under the action of covariant functors, are considered. And we study the shapes equality $ShX = ShY$ of infinite compacts for the space $P ( X )$ of probability measures and its subspaces.
Keywords: covariant functors, $A(N)R$-compacts, $ANR$-systems, probability measures, moving compacts, retracts, measures of finite support, shape equivalence
Mots-clés : homotopy equivalence.
@article{VSGU_2018_24_2_a2,
     author = {T. F. Zhuraev and Q. R. Zhuvonov and Zh. Kh. Ruziev},
     title = {Shape properties of the space of probability measures and its subspaces},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {24--27},
     year = {2018},
     volume = {24},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2018_24_2_a2/}
}
TY  - JOUR
AU  - T. F. Zhuraev
AU  - Q. R. Zhuvonov
AU  - Zh. Kh. Ruziev
TI  - Shape properties of the space of probability measures and its subspaces
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2018
SP  - 24
EP  - 27
VL  - 24
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSGU_2018_24_2_a2/
LA  - en
ID  - VSGU_2018_24_2_a2
ER  - 
%0 Journal Article
%A T. F. Zhuraev
%A Q. R. Zhuvonov
%A Zh. Kh. Ruziev
%T Shape properties of the space of probability measures and its subspaces
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2018
%P 24-27
%V 24
%N 2
%U http://geodesic.mathdoc.fr/item/VSGU_2018_24_2_a2/
%G en
%F VSGU_2018_24_2_a2
T. F. Zhuraev; Q. R. Zhuvonov; Zh. Kh. Ruziev. Shape properties of the space of probability measures and its subspaces. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 24 (2018) no. 2, pp. 24-27. http://geodesic.mathdoc.fr/item/VSGU_2018_24_2_a2/

[1] Oledski J., “On summetric products”, Fund. Math., 131 (1988), 185–190 (in English) | DOI | MR

[2] Borsuk K., Shape theory, Mir, 1976, 187 pp. | MR

[3] Mardesic S., Segal J., “Shapes of compacta and ANR-systems”, Fund. Math., LXXII (1971), 41–59 (in English) | DOI | MR | Zbl

[4] Basmanov V. N., “Covariant functors, retracts and dimension”, DAN USSR, 271:5 (1983), 1033–1036 (in Russian) | MR | Zbl

[5] Kodama Y., Spiez S., Watanabe T., “On shapes of hyperspaces”, Fund. Math., 11 (1978), 59–67 (in English) | DOI | MR

[6] Ponomarev V. I., “On continuous decompositions of bicompacta”, Uspekhi Mat. Nauk, 12 (1957), 335–340 (in English) | MR | Zbl

[7] Shepin E. V., “Functors and uncountable powers of compacta”, Uspekhi Mat. Nauk, 36:3 (1981), 3–62 (in English) | MR

[8] Arhangelski A. V., “On addition theorem for weight of sets lying in bicompacta”, DAN SSSR, 126 (1959), 239–241 (in Russian) | MR

[9] Pelczynski A., “A remark on spaces for zerodimensional X”, Bull. Acad. Polon. Scr. Sci. Math. Astronom. Phys., 19 (1965), 85–89 (in English) | MR

[10] Fedorchuk V. V., “Probability measures in topology”, Uspekhi Mat. Nauk, 46:1 (1991), 41–80 (in English) | MR | Zbl

[11] Mardesic S., Segal J., “Equivalence of the Borsuk and the ANR-system approach to shapes”, Fund. Math., LXXII (1971), 61–66 (in English) | DOI | MR

[12] Zhuraev T. F., Some geometric properties of the function of probability measures P and its subfunctors, MGU, M., 1989, 90 pp. (in Russian) | MR

[13] Zhuraev T. F., “On projectively quotient functors”, Comment. Math. Univ. Carolinae, 42:3 (2001) (in Russian) | MR | Zbl