Boundary value problems for composite type equations with a quasiparabolic operator in the leading part having the variable direction of evolution and discontinuous coefficients
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 24 (2018) no. 2, pp. 7-17

Voir la notice de l'article provenant de la source Math-Net.Ru

The solvability of boundary value problems for non-classical Sobolev type differential equations with an alternating function is studied. This function has a discontinuity of the first kind at the point zero and changes its sign depending on the sign of the variable $x$. The existence and uniqueness of regular solutions having generalized derivatives are proved. To this end we derived a priori estimates.
Mots-clés : Sobolev–type equation, variable direction of evolution, existence
Keywords: boundary value problem, differential operator, regular solution, uniqueness, a priory estimate.
@article{VSGU_2018_24_2_a0,
     author = {A. I. Grigorieva and A. I. Kozhanov},
     title = {Boundary value problems for composite type equations with a quasiparabolic operator in the leading part having the variable direction of evolution and discontinuous coefficients},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {7--17},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2018_24_2_a0/}
}
TY  - JOUR
AU  - A. I. Grigorieva
AU  - A. I. Kozhanov
TI  - Boundary value problems for composite type equations with a quasiparabolic operator in the leading part having the variable direction of evolution and discontinuous coefficients
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2018
SP  - 7
EP  - 17
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGU_2018_24_2_a0/
LA  - ru
ID  - VSGU_2018_24_2_a0
ER  - 
%0 Journal Article
%A A. I. Grigorieva
%A A. I. Kozhanov
%T Boundary value problems for composite type equations with a quasiparabolic operator in the leading part having the variable direction of evolution and discontinuous coefficients
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2018
%P 7-17
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGU_2018_24_2_a0/
%G ru
%F VSGU_2018_24_2_a0
A. I. Grigorieva; A. I. Kozhanov. Boundary value problems for composite type equations with a quasiparabolic operator in the leading part having the variable direction of evolution and discontinuous coefficients. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 24 (2018) no. 2, pp. 7-17. http://geodesic.mathdoc.fr/item/VSGU_2018_24_2_a0/