Boundary value problems for composite type equations with a quasiparabolic operator in the leading part having the variable direction of evolution and discontinuous coefficients
    
    
  
  
  
      
      
      
        
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 24 (2018) no. 2, pp. 7-17
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The solvability of boundary value problems for non-classical Sobolev type differential equations with an alternating function is studied. This function has a discontinuity of the first kind at the point zero and changes its sign depending on the sign of the variable $x$. The existence and uniqueness of regular solutions having generalized derivatives are proved. To this end we derived a priori estimates.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Mots-clés : 
Sobolev–type equation, variable direction of evolution, existence
Keywords: boundary value problem, differential operator, regular solution, uniqueness, a priory estimate.
                    
                  
                
                
                Keywords: boundary value problem, differential operator, regular solution, uniqueness, a priory estimate.
@article{VSGU_2018_24_2_a0,
     author = {A. I. Grigorieva and A. I. Kozhanov},
     title = {Boundary value problems for composite type equations with a quasiparabolic operator in the leading part having the variable direction of evolution and discontinuous coefficients},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {7--17},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2018_24_2_a0/}
}
                      
                      
                    TY - JOUR AU - A. I. Grigorieva AU - A. I. Kozhanov TI - Boundary value problems for composite type equations with a quasiparabolic operator in the leading part having the variable direction of evolution and discontinuous coefficients JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2018 SP - 7 EP - 17 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGU_2018_24_2_a0/ LA - ru ID - VSGU_2018_24_2_a0 ER -
%0 Journal Article %A A. I. Grigorieva %A A. I. Kozhanov %T Boundary value problems for composite type equations with a quasiparabolic operator in the leading part having the variable direction of evolution and discontinuous coefficients %J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ %D 2018 %P 7-17 %V 24 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGU_2018_24_2_a0/ %G ru %F VSGU_2018_24_2_a0
A. I. Grigorieva; A. I. Kozhanov. Boundary value problems for composite type equations with a quasiparabolic operator in the leading part having the variable direction of evolution and discontinuous coefficients. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 24 (2018) no. 2, pp. 7-17. http://geodesic.mathdoc.fr/item/VSGU_2018_24_2_a0/
