Capillary rise with size-dependent surface tension and contact angle
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 24 (2018) no. 1, pp. 47-50 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we consider the size dependent of surface tension in nanocapillary. Based on the analogue of the Gibbs–Tolman–Koenig–Buff differential equation it is shown that for sufficiently small values of the capillary radius the Tolman's equation for the surface tension holds. Taking into account the size dependent of the surface tension and the contact angle the problem of the capillary rise is discussed.
Keywords: capillary, capillary rise, Jurin's law, contact angle, size dependence, radius of curvature, Young–Laplace equation.
Mots-clés : surface tension
@article{VSGU_2018_24_1_a6,
     author = {A. A. Sokurov},
     title = {Capillary rise with size-dependent surface tension and contact angle},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {47--50},
     year = {2018},
     volume = {24},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2018_24_1_a6/}
}
TY  - JOUR
AU  - A. A. Sokurov
TI  - Capillary rise with size-dependent surface tension and contact angle
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2018
SP  - 47
EP  - 50
VL  - 24
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSGU_2018_24_1_a6/
LA  - ru
ID  - VSGU_2018_24_1_a6
ER  - 
%0 Journal Article
%A A. A. Sokurov
%T Capillary rise with size-dependent surface tension and contact angle
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2018
%P 47-50
%V 24
%N 1
%U http://geodesic.mathdoc.fr/item/VSGU_2018_24_1_a6/
%G ru
%F VSGU_2018_24_1_a6
A. A. Sokurov. Capillary rise with size-dependent surface tension and contact angle. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 24 (2018) no. 1, pp. 47-50. http://geodesic.mathdoc.fr/item/VSGU_2018_24_1_a6/

[1] Ono S., Kondo S., Molecular Theory of Surface Tension in Liquids, IL, M., 1963, 284 pp. (in Russian)

[2] Rekhviashvili S. Sh., Kishtikova E. V., “On the size dependence of the surface tension”, Technical Physics, 81:1 (2011), 148–152 (in Russian)

[3] Tolman R. C., “The effect of droplet size on surface tension”, J. Chem. Phys., 17:3 (1949), 333–337 (in English) | DOI

[4] Rekhviashvili S. Sh., Kishtikova E. V., “Influence of the size dependence of surface tension on the dynamics of a bubble in a liquid”, Journal of Experimental and Theoretical Physics, 145:6 (2014), 1116–1120 (in Russian) | DOI

[5] Adamson A., Physical Chemistry of Surfaces, Mir, M., 1979, 568 pp. (in Russian)

[6] Rekhviashvili S. Sh., Kishtikova E. V., “Surface and linear tension and the contact angle of a small drop under isothermal conditions”, Physicochemistry of the surface and protection of materials, 50:1 (2014), 3–7 (in Russian) | DOI | MR