Capillary rise with size-dependent surface tension and contact angle
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 24 (2018) no. 1, pp. 47-50
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we consider the size dependent of surface tension in nanocapillary. Based on the analogue of the Gibbs–Tolman–Koenig–Buff differential equation it is shown that for sufficiently small values of the capillary radius the Tolman's equation for the surface tension holds. Taking into account the size dependent of the surface tension and the contact angle the problem of the capillary rise is discussed.
Keywords:
capillary, capillary rise, Jurin's law, contact angle, size dependence, radius of curvature, Young–Laplace equation.
Mots-clés : surface tension
Mots-clés : surface tension
@article{VSGU_2018_24_1_a6,
author = {A. A. Sokurov},
title = {Capillary rise with size-dependent surface tension and contact angle},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {47--50},
publisher = {mathdoc},
volume = {24},
number = {1},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2018_24_1_a6/}
}
TY - JOUR AU - A. A. Sokurov TI - Capillary rise with size-dependent surface tension and contact angle JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2018 SP - 47 EP - 50 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGU_2018_24_1_a6/ LA - ru ID - VSGU_2018_24_1_a6 ER -
A. A. Sokurov. Capillary rise with size-dependent surface tension and contact angle. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 24 (2018) no. 1, pp. 47-50. http://geodesic.mathdoc.fr/item/VSGU_2018_24_1_a6/