Equations of state of a solid body with a reduced derivative Riemann--Liouville
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 24 (2018) no. 1, pp. 42-46
Voir la notice de l'article provenant de la source Math-Net.Ru
Two equations of state of a solid with the use of the fractional Riemann–Liouville derivative are obtained. Both equations are low-parametric (without involving a large number of adjustable parameters). In the proposed approach, the main task is to determine the parameters of the equation from the experimental data of the phase diagrams of the investigated substances.
Keywords:
equation of state of matter, fractional derivative of Riemann–Liouville, fractal structure of matter.
@article{VSGU_2018_24_1_a5,
author = {M. O. Mamchuev},
title = {Equations of state of a solid body with a reduced derivative {Riemann--Liouville}},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {42--46},
publisher = {mathdoc},
volume = {24},
number = {1},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2018_24_1_a5/}
}
TY - JOUR AU - M. O. Mamchuev TI - Equations of state of a solid body with a reduced derivative Riemann--Liouville JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2018 SP - 42 EP - 46 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGU_2018_24_1_a5/ LA - ru ID - VSGU_2018_24_1_a5 ER -
%0 Journal Article %A M. O. Mamchuev %T Equations of state of a solid body with a reduced derivative Riemann--Liouville %J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ %D 2018 %P 42-46 %V 24 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGU_2018_24_1_a5/ %G ru %F VSGU_2018_24_1_a5
M. O. Mamchuev. Equations of state of a solid body with a reduced derivative Riemann--Liouville. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 24 (2018) no. 1, pp. 42-46. http://geodesic.mathdoc.fr/item/VSGU_2018_24_1_a5/