@article{VSGU_2018_24_1_a5,
author = {M. O. Mamchuev},
title = {Equations of state of a solid body with a reduced derivative {Riemann{\textendash}Liouville}},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {42--46},
year = {2018},
volume = {24},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2018_24_1_a5/}
}
TY - JOUR AU - M. O. Mamchuev TI - Equations of state of a solid body with a reduced derivative Riemann–Liouville JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2018 SP - 42 EP - 46 VL - 24 IS - 1 UR - http://geodesic.mathdoc.fr/item/VSGU_2018_24_1_a5/ LA - ru ID - VSGU_2018_24_1_a5 ER -
M. O. Mamchuev. Equations of state of a solid body with a reduced derivative Riemann–Liouville. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 24 (2018) no. 1, pp. 42-46. http://geodesic.mathdoc.fr/item/VSGU_2018_24_1_a5/
[1] Fortov V. E., Equations of state of matter from an ideal gas to a quark-gluon plasma, Fizmatlit, M., 2013, 493 pp. (in Russian)
[2] Zharkov V. N., Kalinin V. A., Equations of state of solids at high pressures and temperatures, Nauka, M., 1968, 311 pp. (in Russian)
[3] Bushman A. V., Fortov V. E., “Models of the equation of state of matter”, Uspekhi Fizicheskikh Nauk (Advances in Physical Sciences), 140:2 (1983), 177–232 (in Russian) | DOI
[4] Nakhushev A. M., Fractional Calculus and Its Application, Fizmatlit, M., 2003, 272 pp. (in Russian)
[5] Nakhusheva V. A., “On a class of equations of state of matter”, Reports of the Adyghe (Circassian) International Academy of Sciences, 7:2 (2005), 101–107 (in Russian)
[6] Nakhushev A. M., On equations of states of continuous one-dimensional systems and their applications, Logos, Nalchik, 1995, 50 pp. (in Russian)
[7] Rekhviashvili S. Sh., “Application of fractional integro-differentiation for calculation of thermodynamic properties of surfaces”, Solid-State Physics, 2007, no. 4, 756–759 (in Russian)
[8] Rekhviashvili S. Sh., “Equations of state of a solid with a fractal structure”, Technical Physical Letters, 2010, no. 17, 42–47 (in Russian)
[9] Alisultanov Z. Z., Meilanov R. P., “Thermophysical properties of quantum-statistical systems with fractional-power spectrum”, Journal of Siberian Federal University. Mathematics and Physics, 5:3 (2012), 349–358 (in Russian) | MR