Equations of state of a solid body with a reduced derivative Riemann–Liouville
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 24 (2018) no. 1, pp. 42-46 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Two equations of state of a solid with the use of the fractional Riemann–Liouville derivative are obtained. Both equations are low-parametric (without involving a large number of adjustable parameters). In the proposed approach, the main task is to determine the parameters of the equation from the experimental data of the phase diagrams of the investigated substances.
Keywords: equation of state of matter, fractional derivative of Riemann–Liouville, fractal structure of matter.
@article{VSGU_2018_24_1_a5,
     author = {M. O. Mamchuev},
     title = {Equations of state of a solid body with a reduced derivative {Riemann{\textendash}Liouville}},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {42--46},
     year = {2018},
     volume = {24},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2018_24_1_a5/}
}
TY  - JOUR
AU  - M. O. Mamchuev
TI  - Equations of state of a solid body with a reduced derivative Riemann–Liouville
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2018
SP  - 42
EP  - 46
VL  - 24
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSGU_2018_24_1_a5/
LA  - ru
ID  - VSGU_2018_24_1_a5
ER  - 
%0 Journal Article
%A M. O. Mamchuev
%T Equations of state of a solid body with a reduced derivative Riemann–Liouville
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2018
%P 42-46
%V 24
%N 1
%U http://geodesic.mathdoc.fr/item/VSGU_2018_24_1_a5/
%G ru
%F VSGU_2018_24_1_a5
M. O. Mamchuev. Equations of state of a solid body with a reduced derivative Riemann–Liouville. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 24 (2018) no. 1, pp. 42-46. http://geodesic.mathdoc.fr/item/VSGU_2018_24_1_a5/

[1] Fortov V. E., Equations of state of matter from an ideal gas to a quark-gluon plasma, Fizmatlit, M., 2013, 493 pp. (in Russian)

[2] Zharkov V. N., Kalinin V. A., Equations of state of solids at high pressures and temperatures, Nauka, M., 1968, 311 pp. (in Russian)

[3] Bushman A. V., Fortov V. E., “Models of the equation of state of matter”, Uspekhi Fizicheskikh Nauk (Advances in Physical Sciences), 140:2 (1983), 177–232 (in Russian) | DOI

[4] Nakhushev A. M., Fractional Calculus and Its Application, Fizmatlit, M., 2003, 272 pp. (in Russian)

[5] Nakhusheva V. A., “On a class of equations of state of matter”, Reports of the Adyghe (Circassian) International Academy of Sciences, 7:2 (2005), 101–107 (in Russian)

[6] Nakhushev A. M., On equations of states of continuous one-dimensional systems and their applications, Logos, Nalchik, 1995, 50 pp. (in Russian)

[7] Rekhviashvili S. Sh., “Application of fractional integro-differentiation for calculation of thermodynamic properties of surfaces”, Solid-State Physics, 2007, no. 4, 756–759 (in Russian)

[8] Rekhviashvili S. Sh., “Equations of state of a solid with a fractal structure”, Technical Physical Letters, 2010, no. 17, 42–47 (in Russian)

[9] Alisultanov Z. Z., Meilanov R. P., “Thermophysical properties of quantum-statistical systems with fractional-power spectrum”, Journal of Siberian Federal University. Mathematics and Physics, 5:3 (2012), 349–358 (in Russian) | MR