Basis of the properties of weighted exponential systems with excess
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 24 (2018) no. 1, pp. 14-19 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The main aim of this paper is the determination of a class of such functions for which a weighted exponential system becomes complete and minimal in appropriate space when exactly one of its terms is eliminated. It is shown that the system, obtained in this way cannot be a Schouder basis in this space. The last fact shows that Muckenhoupt-type criterion for the exponential system to be the Schauder basis in Lebesgue spaces after elimination of an element does not exist. This paper generalizes the results of the paper by E.S. Golubeva.
Keywords: system of weighted exponentials, Muckenhoupt condition.
@article{VSGU_2018_24_1_a1,
     author = {A. Sh. Shukurov},
     title = {Basis of the properties of weighted exponential systems with excess},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {14--19},
     year = {2018},
     volume = {24},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2018_24_1_a1/}
}
TY  - JOUR
AU  - A. Sh. Shukurov
TI  - Basis of the properties of weighted exponential systems with excess
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2018
SP  - 14
EP  - 19
VL  - 24
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSGU_2018_24_1_a1/
LA  - en
ID  - VSGU_2018_24_1_a1
ER  - 
%0 Journal Article
%A A. Sh. Shukurov
%T Basis of the properties of weighted exponential systems with excess
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2018
%P 14-19
%V 24
%N 1
%U http://geodesic.mathdoc.fr/item/VSGU_2018_24_1_a1/
%G en
%F VSGU_2018_24_1_a1
A. Sh. Shukurov. Basis of the properties of weighted exponential systems with excess. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 24 (2018) no. 1, pp. 14-19. http://geodesic.mathdoc.fr/item/VSGU_2018_24_1_a1/

[1] Babenko K. I., “On conjugate functions”, Doklady Akad. Nauk SSSR (N.S.), 62 (1948), 157–160 (in Russian) | MR | Zbl

[2] Bilalov B. T., Veliyev S. G., “On completeness of exponent system with complex coefficients in weight spaces”, Trans. of NAS of Azer., XXV:7 (2005), 9–14 (in English) | MR

[3] Bilalov B. T., Veliyev S. G., “Bases of eigenfunctions of two discontinuous differential operators”, Diff. Uravn., 42:9 (2006), 190–192 (in English) | MR

[4] Kazaryan K. S., Lizorkin P. I., “Multipliers, bases and unconditional bases of the weighted spaces $B$ and $SB$”, Trudy Mat. Inst. Steklov, 187 (1989), 98–115 (in English) | MR

[5] Pukhov S. S., Sedletski A. M., “Bases of exponentials, sines, and cosines in weighted spaces on a finite interval”, Dokl. Akad. Nauk, 425:4 (2009), 452–455 (in English) | DOI | MR | Zbl

[6] Moiseev E. I., “On the basis property of sine and cosine systems in a weighted space”, Differ. Uravn., 34:1 (1998), 40–44 (in English) | MR | Zbl

[7] Moiseev E. I., “The basis property of a system of eigenfunctions of a differential operator in a weighted space”, Differ. Uravn., 35:2 (1999), 200–205 (in English) | MR | Zbl

[8] Golubeva E. S., “The System of Weighted Exponentials with Power Weights”, Vestnik SamGU. Estestvenno-Nauchnaya Seriia, 2011, no. 2(83), 15–25 (in Russian)

[9] Mamedova Z. V., “On Basis Properties of Degenerate Exponential System”, Applied Mathematics, 3 (2012), 1963–1966 (in English) | DOI

[10] Sadigova S. R., Mamedova Z. V., “Frames from Cosines with the Degenerate Coefficients”, American Journal of Applied Mathematics and Statistics, 1:3 (2013), 36–40 (in English) | DOI

[11] Bilalov B., Gulieva F., “On the Frame Properties of Degenerate System of Sines”, Journal of Function Spaces and Applications, 2012, 184186, 12 pp. (in English) | DOI | MR | Zbl

[12] Bilalov B. T., Mamedova Z. V., “On the frame properties of some degenerate trigonometric systems”, Dokl. Nats. Akad. Nauk Azerb., 68:5 (2012), 14–18 (in English) | MR

[13] Bilalov B. T., Gulieva F. A., “A completeness criterion for a double power system with degenerate coefficients”, Sibirsk. Mat. Zh., 54:3 (2013), 536–543 | MR | Zbl

[14] Gaposhkin V. F., “A generalization of the theorem of M. Riesz on conjugate functions”, Mat. Sb. N.S., 46(88) (1958), 359–372 (in English) | MR | Zbl

[15] Bilalov B. T., Sadigova S. R., “Frame properties of a part of exponential system with degenerate coefficients in Hardy classes”, Georgian Mathematical Journal, 23 (2017) (to appear) (in English) | MR

[16] Hunt R. A., Young W. S., “A weighted norm inequality for Fourier series”, Bull. Amer. Math. Soc., 80 (1974), 274–277 (in English) | DOI | MR | Zbl

[17] Bari N. K., “Biorthogonal systems and bases in Hilbert space”, Moskov. Gos. Univ. Uchenye Zapiski. Matematika, 148:4 (1951), 69–107 (in Russian) | MR

[18] Kazarian K. S., “The multiplicative completion of basic sequences in $L_p, 1 p\infty$ to bases in $L_p$”, Dokl. Akad. Nauk Arm. SSR, 62 (1976), 203–209 (in English) | MR

[19] Kazarian K. S., “On the multiplicative completion of some incomplete orthonormal systems to bases in $L_p, 1 p\infty$”, Analysis Math., 4 (1978), 37–52 (in English) | DOI | MR

[20] Kazarian K. S., “Multiplicative completion of certain systems”, Izv. Akad. Nauk Armyan. SSR Ser. Mat., 13:4 (1978) (in English) | MR

[21] Kritskov L. V., “On the basis property of the system of functions $\{e^{i \alpha nt} \sin (nt)\}$”, Dokl. Akad. Nauk, 346:3 (1996), 297–298 (in Russian) | MR | Zbl

[22] Shukurov A. Sh., “Necessary condition for Kostyuchenko type systems to be a basis in Lebesgue spaces”, Colloq. Math., 127:1 (2012), 105–109 | DOI | MR | Zbl

[23] Shukurov A. Sh., “Addendum to “Necessary condition for Kostyuchenko type systems to be a basis in Lebesgue spaces” [MR2945779]”, Colloq. Math., 137:2 (2014), 297–298 (in English) | DOI | MR | Zbl

[24] Shukurov A. Sh., “The power system is never a basis in the space of continuous functions”, Amer. Math. Monthly, 122:2 (2015), 137 (in English) | DOI | MR | Zbl

[25] Shukurov A. Sh., “Impossibility of power series expansion for continuous functions”, Azerb. J. Math., 6:1 (2016), 122–125 (in English) | MR | Zbl