Basis of the properties of weighted exponential systems with excess
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 24 (2018) no. 1, pp. 14-19

Voir la notice de l'article provenant de la source Math-Net.Ru

The main aim of this paper is the determination of a class of such functions for which a weighted exponential system becomes complete and minimal in appropriate space when exactly one of its terms is eliminated. It is shown that the system, obtained in this way cannot be a Schouder basis in this space. The last fact shows that Muckenhoupt-type criterion for the exponential system to be the Schauder basis in Lebesgue spaces after elimination of an element does not exist. This paper generalizes the results of the paper by E.S. Golubeva.
Keywords: system of weighted exponentials, Muckenhoupt condition.
@article{VSGU_2018_24_1_a1,
     author = {A. Sh. Shukurov},
     title = {Basis of the properties of weighted exponential systems with excess},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {14--19},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2018_24_1_a1/}
}
TY  - JOUR
AU  - A. Sh. Shukurov
TI  - Basis of the properties of weighted exponential systems with excess
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2018
SP  - 14
EP  - 19
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGU_2018_24_1_a1/
LA  - en
ID  - VSGU_2018_24_1_a1
ER  - 
%0 Journal Article
%A A. Sh. Shukurov
%T Basis of the properties of weighted exponential systems with excess
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2018
%P 14-19
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGU_2018_24_1_a1/
%G en
%F VSGU_2018_24_1_a1
A. Sh. Shukurov. Basis of the properties of weighted exponential systems with excess. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 24 (2018) no. 1, pp. 14-19. http://geodesic.mathdoc.fr/item/VSGU_2018_24_1_a1/