The correctness of a Dirichlet type problem in a cylindrical domain for the multidimensional Lavrentiev–Bitsadze equation
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 24 (2018) no. 1, pp. 7-13 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Multidimensional hyperbolic-elliptic equations describe important physical, astronomical and geometric processes. It is known that vibrations of elastic membranes in space according to the Hamiltonian principle can be modeled by a multidimensional wave equation. Assuming that the membrane is in equilibrium in the bending position, the Hamiltonian principle also yields the multidimensional Laplace equation. Consequently, the vibrations of elastic membranes in space can be modeled as the multidimensional Lavrentiev–Bitsadze equation. When studying these applications, it becomes necessary to obtain an explicit representation of the boundary value problems being studied. The author has previously studied the Dirichlet problem for multidimensional hyperbolic-elliptic equations, where a unique solvability of this problem is shown, which essentially depends on the height of the entire cylindrical region under consideration. In this paper we investigate a Dirichlet type problem in the cylindrical domain for the multidimensional Lavrentiev–Bitsadze equation and obtain an explicit form of its classical solution. In this case, the unique solvability depends only on the height of the hyperbolic part of the cylindrical domain, and a criterion for the uniqueness of the solution is given.
Keywords: well-posedness, Dirichlet type problem, cylindrical domain, multidimensional equation, criterion.
@article{VSGU_2018_24_1_a0,
     author = {S. A. Aldashev},
     title = {The correctness of a {Dirichlet} type problem in a cylindrical domain for the multidimensional {Lavrentiev{\textendash}Bitsadze} equation},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {7--13},
     year = {2018},
     volume = {24},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2018_24_1_a0/}
}
TY  - JOUR
AU  - S. A. Aldashev
TI  - The correctness of a Dirichlet type problem in a cylindrical domain for the multidimensional Lavrentiev–Bitsadze equation
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2018
SP  - 7
EP  - 13
VL  - 24
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSGU_2018_24_1_a0/
LA  - ru
ID  - VSGU_2018_24_1_a0
ER  - 
%0 Journal Article
%A S. A. Aldashev
%T The correctness of a Dirichlet type problem in a cylindrical domain for the multidimensional Lavrentiev–Bitsadze equation
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2018
%P 7-13
%V 24
%N 1
%U http://geodesic.mathdoc.fr/item/VSGU_2018_24_1_a0/
%G ru
%F VSGU_2018_24_1_a0
S. A. Aldashev. The correctness of a Dirichlet type problem in a cylindrical domain for the multidimensional Lavrentiev–Bitsadze equation. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 24 (2018) no. 1, pp. 7-13. http://geodesic.mathdoc.fr/item/VSGU_2018_24_1_a0/

[1] Ludwig D., “Uniform asymptotic expansions at a caustic”, Communications in Pure and Applied Mathematics, 19 (1966), 215–250 (in English) | DOI | MR | Zbl

[2] Magnanini R., Talenti G., “Approaching a partial differential equation of mixed elliptic-hyperbolic type”, Ill-posed and Inverse Problems, eds. Anikonov Y., Bukhageim A., Kabanikhin S., Romanov V., VSP, Utrecht, Holland, 2002, 263–276 (in English) | MR

[3] Stoker J. J., Water Waves: The Mathematical Theory with Applications, Wiley-Interscience, New York, 1992, 600 pp. (in Englsih) | MR | Zbl

[4] Otway T. H., “Variational equations on mixed Riemannian-Lorentzian metrics”, Journal of Geometric Physics, 58 (2008), 1043–1061 (in English) | DOI | MR | Zbl

[5] Hartle J. B., Hawking S. W., “Wave function of the universe”, Physical Review D, 28 (1983), 2960–2975 (in English) | DOI | MR | Zbl

[6] Bitsadze A. V., Some classes of partial differential equations, Nauka, M., 1981, 448 pp. (in Russian)

[7] Otway T. H., Elliptic-Hyperbolic Partial Differential Equations, Springer, Berlin, 2015, 128 pp. (in English) | MR | Zbl

[8] Nakhushev A. M., Problems with displacement for a partial differential equation, Nauka, M., 2006, 287 pp. (in Russian)

[9] Nakhushev A. M., “On the Dirichlet problem for a mixed-type equation”, Reports of the Adyghe (Circassian) International Academy of Sciences, 8:2 (2006), 32–42 (in Russian)

[10] Aldashev S. A., “Correctness of the Dirichlet problem in a cylindrical domain for the multidimensional Lavrentiev-Bitsadze equation”, Izvestiya of the National Academy of Sciences of the Republic of Kazakhstan. Series: Physics and Mathematics, 2014, no. 3, 136–143 (in Russian)

[11] Aldashev S. A., “Correctness of the Dirichlet problem in a cylindrical domain for one class of multidimensional hyperbolic-elliptic equations”, Nonlinear oscillations, 16:4 (2013), 435–451 (in Russian); 333:1, 16–18 | Zbl

[12] Soldatov A. P., “Problems of Dirichlet type for the Lavrentiev-Bitsadze equation”, Doklady Mathematics, 332:6 (1993), 696–698 ; 333:1, 16–18 (in Russian) | Zbl | Zbl

[13] Soldatov A. P., “Problems of Dirichlet type for the Lavrentiev-Bitsadze equation”, Differential equations, 30:11 (1994), 2001–2009 (in Russian) | MR | Zbl

[14] Mikhlin S. G., Multidimensional singular integrals and integral equations, Fizmatgiz, M., 1962, 254 pp. (in Russian)

[15] Kamke E., Handbook of ordinary differential equations, Nauka, M., 1965, 703 pp. (in Russian)

[16] Bateman G., Erdelyi A., Higher transcendental functions, v. 2, Nauka, M., 1974, 295 pp. (in Russian) | MR

[17] Tikhonov A. N., Samarskii A. A., Equations of mathematical physics, Nauka, M., 1966, 724 pp. (in Russian) | MR

[18] Aldashev S. A., “The well-posedness of the Dirihlet problem in the cylindric domain for the multidimensional wave equation”, Math. Probl. Eng., 2010 (2010), 653215, 7 pp. (in English) | DOI | MR | Zbl

[19] Aldashev S. A., “Correctness of the Dirichlet problem in the cylindrical domain for multidimensional hyperbolic equations by the wave operator”, Reports of the Adyghe (Circassian) International Academy of Sciences, 13:1 (2011), 21–29 (in Russian) | MR