@article{VSGU_2017_4_a4,
author = {M. V. Shamolin},
title = {On a pendulum motion in multi-dimensional space. {Part} 2. {Independence} of force fields on the tensor of angular velocity},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {40--67},
year = {2017},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2017_4_a4/}
}
TY - JOUR AU - M. V. Shamolin TI - On a pendulum motion in multi-dimensional space. Part 2. Independence of force fields on the tensor of angular velocity JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2017 SP - 40 EP - 67 IS - 4 UR - http://geodesic.mathdoc.fr/item/VSGU_2017_4_a4/ LA - ru ID - VSGU_2017_4_a4 ER -
%0 Journal Article %A M. V. Shamolin %T On a pendulum motion in multi-dimensional space. Part 2. Independence of force fields on the tensor of angular velocity %J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ %D 2017 %P 40-67 %N 4 %U http://geodesic.mathdoc.fr/item/VSGU_2017_4_a4/ %G ru %F VSGU_2017_4_a4
M. V. Shamolin. On a pendulum motion in multi-dimensional space. Part 2. Independence of force fields on the tensor of angular velocity. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 4 (2017), pp. 40-67. http://geodesic.mathdoc.fr/item/VSGU_2017_4_a4/
[1] Shamolin M. V., “Cases of integrability corresponding to the pendulum motion on the plane”, Vestnik of Samara State University. Natural Science Series, 2015, no. 10(132), 91–113 (in Russian)
[2] Shamolin M. V., “Cases of integrability corresponding to the pendulum motion on the three-dimensional space”, Vestnik of Samara State University. Natural Science Series, 2016, no. 3–4, 75–97 (in Russian)
[3] Shamolin M. V., “Variety of cases of integrability in dynamics of lower-, and multi-dimensional body in nonconservative field”, Dinamicheskie sistemy, Itogi nauki i tekhniki. Ser.: “Sovremennaia matematika i ee prilozheniia. Tematicheskie obzory”, 125, 2013, 5–254 (in Russina)
[4] Pokhodnya N. V., Shamolin M. V., “Some cases of integrability of dynamic systems in transcedent functions”, Vestnik of Samara State University. Natural Science Series, 2013, no. 9/1(110), 35–41 (in Russian)
[5] Shamolin M. V., “New Cases of Integrable Systems with Dissipation on the Tangent Bundle of a Three-Dimensional Manifold”, Physics Doklady, 477:2 (2017), 168–172 (in Russian)
[6] Shamolin M. V., “Complete List of First Integrals of Dynamic Equations for a Multidimensional Solid in a Nonconservative Field”, Physics Doklady, 461:5 (2015), 533–536 (in Russian) | DOI
[7] Arnold V. I., Kozlov V. V., Neyshtadt A. I., Mathematical aspects in classical and celestial mechanics, VINITI, M., 1985, 304 p pp. (in Russian) | MR
[8] Trofimov V. V., “Symplectic structures on symmetruc spaces automorphysm groups”, Moscow University Mathematics Bulletin, 1984, no. 6, 31–33 (in Russian)
[9] Trofimov V. V., Shamolin M. V., “Geometrical and dynamical invariants of integrable Hamiltonian and dissipative systems”, Journal of Mathematical Sciences, 16:4 (2010), 3–229 (in Russian)
[10] Shamolin M.V., “Mnogomernyi mayatnik v nekonservativnom silovom pole”, Doklady RAN, 460:2 (2015), 165–169 ; Shamolin M. V., Methods of analysis of various dissipation dynamical systems in dynamics of a rigid body, Izd-vo ”Ekzamen”, M., 2007, 352 pp. (in Russian) | DOI | MR
[11] Shamolin M.V., “Novyi sluchai integriruemosti v dinamike mnogomernogo tverdogo tela v nekonservativnom pole”, Doklady RAN, 453:1 (2013), 46–49 ; Shamolin M. V., “Some model problems of dynamics for a rigid body interacting with a medium”, International Applied Mechanics, 43:10 (2007), 49–67 (in Russian) | DOI | DOI | MR
[12] Shamolin M. V., “New Cases of Integrable Systems with Dissipation on Tangent Bundles of Two- and ThreeDimensional Spheres”, Physics Doklady, 471:5 (2016), 547–551 (in Russian) | DOI | MR
[13] Shamolin M. V., “New Cases of Integrable Systems with Dissipation on a Tangent Bundle of a Multidimensional Sphere”, Physics Doklady, 474:2 (2017), 177–181 (in Russian) | DOI | MR
[14] Shamolin M. V., “New Cases of Integrable Systems with Dissipation on a Tangent Bundle of a Two-Dimensional Manifold”, Physics Doklady, 475:5 (2017), 519–523 (in Russian)