The Brooks–Jevett theorem on uniform dimentricularity on a non-sigma-full class of sets
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 4 (2017), pp. 33-39 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a sequence of exhaustive composition-triangular set functions defined on a non-sigma-complete class of sets, more general than the ring of sets, the Brooks–Jewett theorem on uniform exhaustibility is proved. As a corollary, we have obtained analogue of the Brooks–Jewett theorem for functions defined on a sigma-summable class of sets. It is shown that if, in addition to the property compositional triangularity, the set functions have the composite semi-additivity property and are continuous from above at zero, then an analog of Nikodym's theorem on equicontinuous weak continuity is valid for them. The corresponding results are obtained for a family of quasi-Lipschitz set functions.
Keywords: composition-triangular set functions, composition-semi-additive set functions, non-sigmacomplete class of sets, exhaustibility, continuity from above at zero, uniform exhaustibility, equicontinuous weak continuity.
Mots-clés : multiplicative class of sets
@article{VSGU_2017_4_a3,
     author = {T. A. Sribnaya},
     title = {The {Brooks{\textendash}Jevett} theorem on uniform dimentricularity on a non-sigma-full class of sets},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {33--39},
     year = {2017},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2017_4_a3/}
}
TY  - JOUR
AU  - T. A. Sribnaya
TI  - The Brooks–Jevett theorem on uniform dimentricularity on a non-sigma-full class of sets
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2017
SP  - 33
EP  - 39
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSGU_2017_4_a3/
LA  - ru
ID  - VSGU_2017_4_a3
ER  - 
%0 Journal Article
%A T. A. Sribnaya
%T The Brooks–Jevett theorem on uniform dimentricularity on a non-sigma-full class of sets
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2017
%P 33-39
%N 4
%U http://geodesic.mathdoc.fr/item/VSGU_2017_4_a3/
%G ru
%F VSGU_2017_4_a3
T. A. Sribnaya. The Brooks–Jevett theorem on uniform dimentricularity on a non-sigma-full class of sets. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 4 (2017), pp. 33-39. http://geodesic.mathdoc.fr/item/VSGU_2017_4_a3/

[1] Dunford N., Schwartz J., Linear operators, v. 1, General theory, IIL, M., 1962, 896 pp. (in Russian) | MR

[2] Brooks J. K., Jewett R. S., “On finitely additive vector measures”, Proc. Nat. Acad. Sci USA, 67:3 (1970), 1294–1298 (in English) | DOI | MR

[3] Guselnikov N. S., “On the theorems of Brooks-Jewett and Nicodemus”, Collection Theory of functions and functional analysis, L., 1975, 45–54 (in Russian) | MR

[4] Klimkin V. M., Introduction to the theory of set functions, Izdatel'stvo Saratovskogo universiteta, Kuibyshevskii filial, 1989, 210 pp. (in Russian)

[5] Molto A., “On the Vitali-Hahn-Saks theorem”, Proc. Royal. Soc. Edinburgh Sect. A, 90 (1981), 163–173 (in English) | DOI | MR

[6] Schachermayer W., “On some classical measure-theoretic theorems for non-sigma-complete Boolean algebras”, Dissertationes Math., 214, Warszawa, 1982, 1–33 (in English) | MR

[7] Friniche F. I., “The Vitali-Hahn-Saks theorem for Boolean algebras with the subsequential interprolation property”, Proc. Amer. Math. Soc., 92:3 (1984), 362–366 (in English) | DOI | MR

[8] Lucia P., Marales P., “Some Consequences of the Brooks-Jewett theorem for Additive Uniform Semigroup-valued Functions”, Conf. Semin. Mat. Univ. Bari, 227 (1988), 1–23 (in English) | MR

[9] Guselnikov N. S., “On the extension of quasi-Lipschitz set functions”, Mathematical Notes, 17:1 (1975), 21–31 (in Russian) | MR

[10] Seever G. L., “Measures on F-spaces”, Trans. Amer. Math. Soc., 133 (1968), 267–280 (in English) | MR

[11] Sribnaya T. A., “A criterion for the uniform exhaustibility of a family of vector external measures”, Vestnik of Samara State University, 2012, no. 6 (97), 58–65 (in Russian)