The Brooks--Jevett theorem on uniform dimentricularity on a non-sigma-full class of sets
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 4 (2017), pp. 33-39
Voir la notice de l'article provenant de la source Math-Net.Ru
For a sequence of exhaustive composition-triangular set functions defined on a non-sigma-complete class of sets, more general than the ring of sets, the Brooks–Jewett theorem on uniform exhaustibility is proved. As a corollary, we have obtained analogue of the Brooks–Jewett theorem for functions defined on a sigma-summable class of sets. It is shown that if, in addition to the property compositional triangularity, the set functions have the composite semi-additivity property and are continuous from above at zero, then an analog of Nikodym's theorem on equicontinuous weak continuity is valid for them. The corresponding results are obtained for a family of quasi-Lipschitz set functions.
Keywords:
composition-triangular set functions, composition-semi-additive set functions, non-sigmacomplete
class of sets, exhaustibility, continuity from above at zero, uniform
exhaustibility, equicontinuous weak continuity.
Mots-clés : multiplicative class of sets
Mots-clés : multiplicative class of sets
@article{VSGU_2017_4_a3,
author = {T. A. Sribnaya},
title = {The {Brooks--Jevett} theorem on uniform dimentricularity on a non-sigma-full class of sets},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {33--39},
publisher = {mathdoc},
number = {4},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2017_4_a3/}
}
TY - JOUR AU - T. A. Sribnaya TI - The Brooks--Jevett theorem on uniform dimentricularity on a non-sigma-full class of sets JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2017 SP - 33 EP - 39 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGU_2017_4_a3/ LA - ru ID - VSGU_2017_4_a3 ER -
T. A. Sribnaya. The Brooks--Jevett theorem on uniform dimentricularity on a non-sigma-full class of sets. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 4 (2017), pp. 33-39. http://geodesic.mathdoc.fr/item/VSGU_2017_4_a3/