The frame for algorithm signal recovery
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 4 (2017), pp. 25-32 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A frame of a finite-dimensional Euclidean space composed of vectors and their sums is considered. The operator proof of frame properties of the constructed system is presented, the eigenvalues for the matrix of the frame operator are found, which are also frame boundaries. The property of alternative completeness of the constructed system is proved. This property is the cause of interest in the constructed frame, since in real Euclidean space it is equivalent to injectivity of the measurement operator, which maps the signal vector into a sequence of measurement modules. The investigated frame underlies the fast algorithm of signal reconstruction, proposed by M. Shapiro and stated in [1]. An operator that translates the constructed frame into the Parseval–Steklov frame closest to it, is found.
Keywords: frame, Parseval–Steklov frame, analysis operator, synthesis operator, frame operator, eigenvector, alternative completeness.
Mots-clés : eigenvalent
@article{VSGU_2017_4_a2,
     author = {D. A. Rogach},
     title = {The frame for algorithm signal recovery},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {25--32},
     year = {2017},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2017_4_a2/}
}
TY  - JOUR
AU  - D. A. Rogach
TI  - The frame for algorithm signal recovery
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2017
SP  - 25
EP  - 32
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSGU_2017_4_a2/
LA  - ru
ID  - VSGU_2017_4_a2
ER  - 
%0 Journal Article
%A D. A. Rogach
%T The frame for algorithm signal recovery
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2017
%P 25-32
%N 4
%U http://geodesic.mathdoc.fr/item/VSGU_2017_4_a2/
%G ru
%F VSGU_2017_4_a2
D. A. Rogach. The frame for algorithm signal recovery. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 4 (2017), pp. 25-32. http://geodesic.mathdoc.fr/item/VSGU_2017_4_a2/

[1] R. Balan et al., “Fast algorithms for signal reconstruction without phase”, Wavelets XII, Proc. SPIE, 6701, 2007, 670111920–670111932 (in English)

[2] Novikov S. Ya., Likhobabenko M. A., Frames of finite dimensional spaces, Samarskii gosuniversitet, Samara, 2013, 5–24 (in Russian)

[3] Novikov S. Ya., Frames of finite dimensional spaces and discrete phase problem, Samarskii gosuniversitet, Samara, 2016, 25–35 (in Russian)

[4] Frazier M., An Introduction to Wavelets Through Linear Algebra, BINOM, M., 2008, 487 pp. (in Russian)

[5] Christensen O., An Introduction to Frames and Riesz bases, Birkhäuser, Boston, 2003, 440 pp. (in English) | MR

[6] A. Bandeira et al., Saving phase: Injectivity and stability, 1302, arXiv: (in English) math4618v1

[7] Balan R., Casazza P., Edidin D., “On signal reconstruction without phase”, Appl. Comput. Harmon. Anal., 20:3 (2006), 345–356 (in English) | DOI | MR

[8] Dustin G. M., SOFT 2016: Summer of Frame Theory, (in English) (accessed 15.06.2016) http://dustingmixon.wordpress.com/2016/05/03/soft-2016-summer-of-frame-theory