Mots-clés : eigenvalent
@article{VSGU_2017_4_a2,
author = {D. A. Rogach},
title = {The frame for algorithm signal recovery},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {25--32},
year = {2017},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2017_4_a2/}
}
D. A. Rogach. The frame for algorithm signal recovery. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 4 (2017), pp. 25-32. http://geodesic.mathdoc.fr/item/VSGU_2017_4_a2/
[1] R. Balan et al., “Fast algorithms for signal reconstruction without phase”, Wavelets XII, Proc. SPIE, 6701, 2007, 670111920–670111932 (in English)
[2] Novikov S. Ya., Likhobabenko M. A., Frames of finite dimensional spaces, Samarskii gosuniversitet, Samara, 2013, 5–24 (in Russian)
[3] Novikov S. Ya., Frames of finite dimensional spaces and discrete phase problem, Samarskii gosuniversitet, Samara, 2016, 25–35 (in Russian)
[4] Frazier M., An Introduction to Wavelets Through Linear Algebra, BINOM, M., 2008, 487 pp. (in Russian)
[5] Christensen O., An Introduction to Frames and Riesz bases, Birkhäuser, Boston, 2003, 440 pp. (in English) | MR
[6] A. Bandeira et al., Saving phase: Injectivity and stability, 1302, arXiv: (in English) math4618v1
[7] Balan R., Casazza P., Edidin D., “On signal reconstruction without phase”, Appl. Comput. Harmon. Anal., 20:3 (2006), 345–356 (in English) | DOI | MR
[8] Dustin G. M., SOFT 2016: Summer of Frame Theory, (in English) (accessed 15.06.2016) http://dustingmixon.wordpress.com/2016/05/03/soft-2016-summer-of-frame-theory