Boundary value problems for a class of nonlocal integro-differential equations with degeneration
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 4 (2017), pp. 19-24 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we study the solvability of boundary value problems for integro-differential equation. One of the features of the equations under consideration is the possibility of degeneration when some of coefficients vanish. The other feature is that the equations under consideration are nonlocal. This motivates modifications in statement of problems. Nonlocal nature of equation in particular leads to nonlocal conditions. Sufficient conditions providing well-posedness of four problems are obtained.
Keywords: integro-differential equations, boundary problems, degeneration, existence and uniqueness of solutions.
Mots-clés : nonlocal conditions
@article{VSGU_2017_4_a1,
     author = {A. I. Kozhanov},
     title = {Boundary value problems for a class of nonlocal integro-differential equations with degeneration},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {19--24},
     year = {2017},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2017_4_a1/}
}
TY  - JOUR
AU  - A. I. Kozhanov
TI  - Boundary value problems for a class of nonlocal integro-differential equations with degeneration
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2017
SP  - 19
EP  - 24
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSGU_2017_4_a1/
LA  - ru
ID  - VSGU_2017_4_a1
ER  - 
%0 Journal Article
%A A. I. Kozhanov
%T Boundary value problems for a class of nonlocal integro-differential equations with degeneration
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2017
%P 19-24
%N 4
%U http://geodesic.mathdoc.fr/item/VSGU_2017_4_a1/
%G ru
%F VSGU_2017_4_a1
A. I. Kozhanov. Boundary value problems for a class of nonlocal integro-differential equations with degeneration. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 4 (2017), pp. 19-24. http://geodesic.mathdoc.fr/item/VSGU_2017_4_a1/

[1] Nahushev A. M., Loaded equations and their application, Nauka, M., 2012 (in Russian)

[2] Dzhenaliev M. T., “On the theory of linear boundary value problems for loaded differential equations”, In-t teoreticheskoi i prikladnoi matematiki, Almaty, 1995 (in Russian)

[3] Egorov I. E., Fedorov V. E., Nonclassical equations of high-order mathematical physics, Vychisl. Tsentr SO RAN, Novosibirsk, 1995 (in Russian)

[4] Efimova E. S., Egorov I. E., Kolesova M. S., “Error Estimate to the Stationary Galerkin Method Applied to a Semilinear Parabolic Equation with Alternating Time Direction”, Journal of Mathematical Sciences, 2016, no. 213(6), 838–843 (in English) | DOI | MR

[5] Egorov I. E., Fedorov V. E., Tihonova I. M., Efimova E. S., “The Galerkin method for nonclassical equations of mathematical physics”, VIII International Conference on mathematical modeling, Abstracts of reports (Yakutsk, July 4–8, 2017), 11 (in Russian)

[6] Bitsadze A. V., Equations of Mathematical Physics, Nauka, M., 1976 (in Russian)

[7] Ladyzhenskaya O. A., Uraltseva N. N., Linear and quasilinear equations of elliptic type, Nauka, M., 1973 (in Russian)