A problem on longitudinal vibration in a short bar with dynamical boundary conditions
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 4 (2017), pp. 7-18
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we consider an initial-boundary problem with dynamical nonlocal boundary condition for a pseudohyperbolic fourth-order equation in a rectangular. Dynamical nonlocal boundary condition represents a relation between values of a required solution, its derivatives with respect of spacial variables, second-order derivatives with respect of time-variables and an integral term. This problem may be used as a mathematical model of longitudinal vibration in a thick short bar and illustrates a nonlocal approach to such processes. The main result lies in justification of solvability of this problem. Existence and uniqueness of a generalized solution are proved. The proof is based on the a priori estimates obtained in this paper, Galerkin's procedure and the properties of the Sobolev spaces.
Keywords:
pseudohyperbolic equation, dynamical boundary conditions, longitudinal vibration, generalized solution.
Mots-clés : nonlocal conditions
Mots-clés : nonlocal conditions
@article{VSGU_2017_4_a0,
author = {A. B. Beylin and L. S. Pulkina},
title = {A problem on longitudinal vibration in a short bar with dynamical boundary conditions},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {7--18},
publisher = {mathdoc},
number = {4},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2017_4_a0/}
}
TY - JOUR AU - A. B. Beylin AU - L. S. Pulkina TI - A problem on longitudinal vibration in a short bar with dynamical boundary conditions JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2017 SP - 7 EP - 18 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGU_2017_4_a0/ LA - ru ID - VSGU_2017_4_a0 ER -
%0 Journal Article %A A. B. Beylin %A L. S. Pulkina %T A problem on longitudinal vibration in a short bar with dynamical boundary conditions %J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ %D 2017 %P 7-18 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGU_2017_4_a0/ %G ru %F VSGU_2017_4_a0
A. B. Beylin; L. S. Pulkina. A problem on longitudinal vibration in a short bar with dynamical boundary conditions. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 4 (2017), pp. 7-18. http://geodesic.mathdoc.fr/item/VSGU_2017_4_a0/