A problem on longitudinal vibration in a short bar with dynamical boundary conditions
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 4 (2017), pp. 7-18

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider an initial-boundary problem with dynamical nonlocal boundary condition for a pseudohyperbolic fourth-order equation in a rectangular. Dynamical nonlocal boundary condition represents a relation between values of a required solution, its derivatives with respect of spacial variables, second-order derivatives with respect of time-variables and an integral term. This problem may be used as a mathematical model of longitudinal vibration in a thick short bar and illustrates a nonlocal approach to such processes. The main result lies in justification of solvability of this problem. Existence and uniqueness of a generalized solution are proved. The proof is based on the a priori estimates obtained in this paper, Galerkin's procedure and the properties of the Sobolev spaces.
Keywords: pseudohyperbolic equation, dynamical boundary conditions, longitudinal vibration, generalized solution.
Mots-clés : nonlocal conditions
@article{VSGU_2017_4_a0,
     author = {A. B. Beylin and L. S. Pulkina},
     title = {A problem on longitudinal vibration in a short bar with dynamical boundary conditions},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {7--18},
     publisher = {mathdoc},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2017_4_a0/}
}
TY  - JOUR
AU  - A. B. Beylin
AU  - L. S. Pulkina
TI  - A problem on longitudinal vibration in a short bar with dynamical boundary conditions
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2017
SP  - 7
EP  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGU_2017_4_a0/
LA  - ru
ID  - VSGU_2017_4_a0
ER  - 
%0 Journal Article
%A A. B. Beylin
%A L. S. Pulkina
%T A problem on longitudinal vibration in a short bar with dynamical boundary conditions
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2017
%P 7-18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGU_2017_4_a0/
%G ru
%F VSGU_2017_4_a0
A. B. Beylin; L. S. Pulkina. A problem on longitudinal vibration in a short bar with dynamical boundary conditions. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 4 (2017), pp. 7-18. http://geodesic.mathdoc.fr/item/VSGU_2017_4_a0/