Mathematical description of non-linear relaxating polarization in dielectrics with hydrogen bonds
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3 (2017), pp. 71-83 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Analytical investigating of the patterns of relaxation (volume-charge) polarization in dielectric materials class hydrogen bonded crystals (HBC) in the wide range of temperature (1–1500 K) and polarizing field strengths (100 kV/m–100 MV/m) in alternating field at frequencies of about 1 kHz–10 MHz is made. The generalized nonlinear by the polarizing field the semi-classical kinetic equation of proton relaxation, having (in this model) sense the protons current continuity equation solving by method of successive approximation by decomposition in infinite power series in comparison parameter is built. It is established that in the range of low fields (100–1000 kV/m) and high temperatures (100–250 K) the generalized kinetic equation is converted to the linearized Fokker–Planck equation and at low (70–100 K) and sufficiently high (250–450 K) temperatures are showed the nonlinear polarization effects caused respectively by proton tunneling and volume charge relaxation. With ultra-low (1–10 K) and ultra-high (500–1500 K) temperatures in the range of high fields (10 MV/m–100 MV/m) the contribution of such effects to the polarization is amplified. The influence of the non-linearities to relaxation times for microscopic acts of transitions protons through the potential barrier is studied.
Keywords: hydrogen bonded crystals (HBC), proton relaxation and conductivity, generalized nonlinear kinetic equation
Mots-clés : equations of Fokker–Planck.
@article{VSGU_2017_3_a7,
     author = {V. A. Kalytka},
     title = {Mathematical description of non-linear relaxating polarization in dielectrics with hydrogen bonds},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {71--83},
     year = {2017},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2017_3_a7/}
}
TY  - JOUR
AU  - V. A. Kalytka
TI  - Mathematical description of non-linear relaxating polarization in dielectrics with hydrogen bonds
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2017
SP  - 71
EP  - 83
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSGU_2017_3_a7/
LA  - ru
ID  - VSGU_2017_3_a7
ER  - 
%0 Journal Article
%A V. A. Kalytka
%T Mathematical description of non-linear relaxating polarization in dielectrics with hydrogen bonds
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2017
%P 71-83
%N 3
%U http://geodesic.mathdoc.fr/item/VSGU_2017_3_a7/
%G ru
%F VSGU_2017_3_a7
V. A. Kalytka. Mathematical description of non-linear relaxating polarization in dielectrics with hydrogen bonds. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3 (2017), pp. 71-83. http://geodesic.mathdoc.fr/item/VSGU_2017_3_a7/

[1] Tonkonogov M. P., “Dielectric spectroscopy of crystals with hydrogen bonds. Proton relaxation”, Physics Uspekhi (Advances in Physical Sciences), 168:1 (1998), 29–54 (in Russian) | DOI

[2] Antonova A. M., Vorobyov A. V., Lyalikov B. A., “To the choice of materials for non-traditional thermal insulation for thermal and nuclear power stations”, Energy: ecology, reliability, safety, Proceedings of the 14-th Russian scientific and technical conference, Izdatel'stvo TPU, Tomsk, 2008, 289 (in Russian)

[3] Belonenko M. B., “Peculiarities of laser pulse nonlinear dynamics in photorefractive ferroelectrics with hydrogen bonds”, Quantum electronics, 25:3 (1998), 255–258 (in Russian)

[4] Reijers R., Haije W., Literature review on high temperature proton conducting materials, ECN-E-08-091, Energy research Centre of the Netherlands, 2008 (in English)

[5] Yaroslavtsev A. B., “The main directions of development and research of solid electrolytes”, Russian chemical reviews, 85 (2016), 1255 (in Russian)

[6] Tonkonogov M. P., Ismailov Zh. T., Timokhin V. M., Fazylov K. K., Kalytka V. A., Baimukhanov Z. K., “Nonlinear theory of spectra of thermally stimulated currents in complex crystals with hydrogen-bonds”, Russian Physics Journal, 2002, no. 10, 76–84 (in Russian)

[7] Annenkov Yu.M., Kalytka V. A., Korovkin M. V., “Quantum effects under migratory polarization in nanometer layers of proton semiconductors and dielectrics at ultralow temperatures”, Russian Physics Journal, 58:1 (2015), 35–41 | DOI

[8] Kalytka V. A., Korovkin M. V., “Dispersion relations for proton relaxation in solid dielectrics”, Russian Physics Journal, 59:12 (2017), 2151–2161 | DOI

[9] Tonkonogov M. P., Kuketayev T. A., Fazylov K. K., Kalytka V. A., “Quantum effects under thermostimulated depolarization in compound hydrogen-bonded crystals”, Russian Physics Journal, 47:6 (2004), 583–590 | DOI

[10] Kalytka V. A., Korovkin M. V., Proton conductivity, LAP Lambert Academic Publishing 2015, 180 p., Saarbrucken (in Russian)

[11] Timokhin V. M., “Peculiarities of the proton transport in widezone crystals”, Applied Physics, 2012, no. 1, 12–18 (in Russian)

[12] Timokhin V. M., “Tunneling effect and proton relaxation in electrical materials”, Advances in current natural sciences, 2010, no. 3, 134–136 (in Russian)

[13] Kalytka V. A., Nikonova T. Yu., “Nonlinear electrophysical properties of proton semiconductors and dielectrics”, Actual problems of electronic instrument engineering (APEIE-2016), Proceedings of XIII International scientific and practical conference, v. 2, Electron-Physical Section, Novosibirsk, 2016, 57–65 (in Russian)

[14] Kalytka V. A., Baimukhanov Z. K., Mekhtiev A. D., “Non-linear effects under polarization of dielectrics with compound crystalline structure”, Proceedings of the Russian Higher School Academy of Sciences, 2016, no. 3(32), 7–21 (in Russian) | DOI

[15] Samoylovich A. G., Klinger M. I., Koreblit L. L., “New conclusion of unbalanced distribution function in semiconductors”, Solid State Physics, Collection of articles, v. II, 1959, 121–135 (in Russian)

[16] Annenkov Yu., Ivashutenko A. S., Vlasov I. V., Kabyshev A. V., “The electrical properties of corundum-zirconium ceramics”, Bulletin of the Tomsk Polytechnic University, 308:7 (2005), 35–38 (in Russian)