@article{VSGU_2017_3_a5,
author = {M. V. Shamolin},
title = {On a pendulum motion in multi-dimensional space. {Part} 1. {Dynamical} systems},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {41--64},
year = {2017},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2017_3_a5/}
}
M. V. Shamolin. On a pendulum motion in multi-dimensional space. Part 1. Dynamical systems. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3 (2017), pp. 41-64. http://geodesic.mathdoc.fr/item/VSGU_2017_3_a5/
[1] Shamolin M. V., “Cases of integrability corresponding to the pendulum motion on the plane”, Vestnik of Samara State University. Natural Science Series, 2015, no. 10(132), 91–113 (in Russian)
[2] Shamolin M. V., “Cases of integrability corresponding to the pendulum motion on the three-dimensional space”, Vestnik of Samara State University. Natural Science Series, 2016, no. 3–4, 75–97 (in Russian)
[3] Shamolin M. V., “Variety of cases of integrability in dynamics of lower-, and multi-dimensional body in nonconservative field”, Dinamicheskie sistemy, Itogi nauki i tekhniki. Ser.: “Sovremennaia matematika i ee prilozheniia. Tematicheskie obzory”, 125, 2013, 5–254 (in Russina)
[4] Pokhodnya N. V., Shamolin M. V., “Some cases of integrability of dynamic systems in transcedent functions”, Vestnik of Samara State University. Natural Science Series, 2013, no. 9/1(110), 35–41 (in Russian)
[5] Shamolin M. V., “Variety of types of phase portraits in dynamics of a rigid body interacting with a resisting medium”, Physics Doklady, 349:2 (1996), 193–197 (in Russian)
[6] Shamolin M. V., “With Variable Dissipation: Approaches, Methods, and Applications”, Journal of Mathematical Sciences, 14:3 (2008), 3–237 (in Russian)
[7] Arnold V. I., Kozlov V. V., Neyshtadt A. I., Mathematical aspects in classical and celestial mechanics, VINITI, M., 1985, 304 p pp. (in Russian)
[8] Trofimov V. V., “Symplectic structures on symmetruc spaces automorphysm groups”, Moscow University Mathematics Bulletin, 1984, no. 6, 31–33 (in Russian)
[9] Trofimov V. V., Shamolin M. V., “Geometrical and dynamical invariants of integrable Hamiltonian and dissipative systems”, Journal of Mathematical Sciences, 16:4 (2010), 3–229 (in Russian)
[10] Shamolin M. V., Methods of analysis of various dissipation dynamical systems in dynamics of a rigid body, Izd-vo “Ekzamen”, M., 2007, 352 pp. (in Russian)
[11] Shamolin M. V., “Some model problems of dynamics for a rigid body interacting with a medium”, International Applied Mechanics, 43:10 (2007), 49–67 (in Russian)
[12] Shamolin M. V., “New Cases of Integrable Systems with Dissipation on Tangent Bundles of Two- and ThreeDimensional Spheres”, Physics Doklady, 471:5 (2016), 547–551 (in Russian) | DOI
[13] Shamolin M. V., “New Cases of Integrable Systems with Dissipation on a Tangent Bundle of a Multidimensional Sphere”, Physics Doklady, 474:2 (2017), 177–181 (in Russian) | DOI
[14] Shamolin M. V., “New Cases of Integrable Systems with Dissipation on a Tangent Bundle of a Two-Dimensional Manifold”, Physics Doklady, 475:5 (2017), 519–523 (in Russian)