On the extension of non-additive set functions
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3 (2017), pp. 34-40 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we prove theorems on the extension of non-additive set functions domain of definition of which, generally speaking, is not a ring, on the sigma-ring of sets. It is shown that continuous from the top at zero, the exhaustive compositional submersion of the first or second kind can be continued from the multiplicative class of sets to the sigma-ring of sets to a complete quasitriangular submerse complete at zero. Conditions are found under which the composition sub-measure of the first (second) kind extends to the composition sub-measure of the same kind. The continuation of the composite submerses obtained in the work is, in general, not unique. Some particular types of submeasures are considered, for which uniqueness of continuation takes place.
Keywords: extension of set functions, exhaustive non-additive set functions, composition submeasures.
@article{VSGU_2017_3_a4,
     author = {T. A. Sribnaya},
     title = {On the extension of non-additive set functions},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {34--40},
     year = {2017},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2017_3_a4/}
}
TY  - JOUR
AU  - T. A. Sribnaya
TI  - On the extension of non-additive set functions
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2017
SP  - 34
EP  - 40
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSGU_2017_3_a4/
LA  - ru
ID  - VSGU_2017_3_a4
ER  - 
%0 Journal Article
%A T. A. Sribnaya
%T On the extension of non-additive set functions
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2017
%P 34-40
%N 3
%U http://geodesic.mathdoc.fr/item/VSGU_2017_3_a4/
%G ru
%F VSGU_2017_3_a4
T. A. Sribnaya. On the extension of non-additive set functions. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3 (2017), pp. 34-40. http://geodesic.mathdoc.fr/item/VSGU_2017_3_a4/

[1] Ricanova Z., “On the extension of measures with values in partially ordered semigroups”, Math. Nachr., 106 (1982), 201–209 (in English) | DOI | MR

[2] Boccuto A., “On Stone-type extensions for group-valued measures”, Math. Slov., 45:3 (1995), 309–315 (in English) | MR

[3] Dobrakov I., “On extension of vector polymeasures, II”, Math. Slov., 45:4 (1995), 377–380 (in English) | MR

[4] Aleksyuk V. N., Beznosikov F. D., “Continuation of a continuous exterior measure on a Boolean algebra”, Russian Mathematics (Iz. VUZ), 1972, no. 4, 3–9 (in Russian)

[5] Guselnikov N. S., “On the extension of quasi-Lipschitz set functions”, Mathematical Notes, 17:1 (1975), 21–31 (in Russian)

[6] Malyugin S. A., “The topology of covering sets and continuous continuation of external measures”, Mathematical Notes, 26:2 (1979), 285–292 (in Russian)

[7] Saveliev L. Ya., “External measures and external topologies”, Siberian Mathematical Journal, 1983, no. 2, 133–149 (in Russian)

[8] Klimkin V. M., Sribnaya T. A., “Continuation of quasi-triangular submeasure”, Russian Mathematics (Iz. VUZ), 1992, no. 2, 42–48 (in Russian)

[9] Sribnaya T. A., “Continuation of the set function with values in a partially ordered semigroup”, Vestnik of Samara State University, 2007, no. 6 (56), 269–280 (in Russian)

[10] Drewnowski L., “Topological rings of sets, continuous set functions, integration. I; II”, Bull. Acad. Polon. Sci., Ser. sci Math. Astr. Phys., 20:4 (1972), 269–276 ; 277–286 (in English) | MR

[11] Bogachev V. I., Fundamentals of measure theory, v. 1, Scientific research centre Regular and chaotic dynamics, M.–Izhevsk, 2006, 583 pp. (in Russian)

[12] Sribnaya T. A., On the continuation of the composite function of the set, Depository in the All-Union Institute of Scientific and Technical Information of the Russian Academy of Sciences, No 52-V2013, Samara National Research University, 2013, 15 pp. (in Russian)