On certain control problem of displacement at one endpoint of a thin bar
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3 (2017), pp. 12-17
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we study an inverse problem for hyperbolic equation. This problem arises when we consider vibration of a thin bar if one endpoint is fixed but behavior of the other is unknown and is the subject to find. Overdetermination is given in the form of integral with respect to spacial variable. The problem is reduced to the second kind Volterra integral equation. Special case is considered.
Keywords:
hyperbolic equation, vibration of a thin bar, inverse problem, integral overdetermination.
@article{VSGU_2017_3_a1,
author = {A. B. Beylin},
title = {On certain control problem of displacement at one endpoint of a thin bar},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {12--17},
publisher = {mathdoc},
number = {3},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2017_3_a1/}
}
TY - JOUR AU - A. B. Beylin TI - On certain control problem of displacement at one endpoint of a thin bar JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2017 SP - 12 EP - 17 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGU_2017_3_a1/ LA - ru ID - VSGU_2017_3_a1 ER -
A. B. Beylin. On certain control problem of displacement at one endpoint of a thin bar. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3 (2017), pp. 12-17. http://geodesic.mathdoc.fr/item/VSGU_2017_3_a1/