On certain control problem of displacement at one endpoint of a thin bar
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3 (2017), pp. 12-17 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we study an inverse problem for hyperbolic equation. This problem arises when we consider vibration of a thin bar if one endpoint is fixed but behavior of the other is unknown and is the subject to find. Overdetermination is given in the form of integral with respect to spacial variable. The problem is reduced to the second kind Volterra integral equation. Special case is considered.
Keywords: hyperbolic equation, vibration of a thin bar, inverse problem, integral overdetermination.
@article{VSGU_2017_3_a1,
     author = {A. B. Beylin},
     title = {On certain control problem of displacement at one endpoint of a thin bar},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {12--17},
     year = {2017},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2017_3_a1/}
}
TY  - JOUR
AU  - A. B. Beylin
TI  - On certain control problem of displacement at one endpoint of a thin bar
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2017
SP  - 12
EP  - 17
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSGU_2017_3_a1/
LA  - ru
ID  - VSGU_2017_3_a1
ER  - 
%0 Journal Article
%A A. B. Beylin
%T On certain control problem of displacement at one endpoint of a thin bar
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2017
%P 12-17
%N 3
%U http://geodesic.mathdoc.fr/item/VSGU_2017_3_a1/
%G ru
%F VSGU_2017_3_a1
A. B. Beylin. On certain control problem of displacement at one endpoint of a thin bar. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3 (2017), pp. 12-17. http://geodesic.mathdoc.fr/item/VSGU_2017_3_a1/

[1] Rao J. S., Advanced Theory of Vibration, Wiley, N.Y., 1992, 431 pp.

[2] Fedotov I. A., Polyanin A. D., Shatalov M. Yu., “Theory of free vibration of rigid rod based on Rayleigh model”, Proceedings of the Russian Academy of Sciences, 417:1 (2007), 56–61 (in Russian)

[3] Beylin A. B., Pulkina L. S., “A Problem on Longitudinal Vibration in a Short Bar with Dynamical Boundary Conditions”, Vestnik of Samara State University. Natural Science Series, 2014, no. 3(114), 9–19 (in Russian)

[4] Beylin A. B., “Task on longitudinal vibration of an elastic attached loaded rod”, Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 20:2 (2016), 249–258 (in Russian) | DOI

[5] Babakov I. M., Theory of vibrations, Nauka, M., 1968, 560 pp. (in Russian)

[6] Khazanov Kh.S., Mechanical oscillations of systems with distributed parameters, textbook, Samar. Gosud. Aerokosmich. Un-t, Samara, 2002, 80 pp. (in Russian)

[7] Veiz V. L., Dondoshansky V. K., Chiriaev V. I., Forced oscillations in metal-cutting machines, Mashgiz, M.–L., 1959, 288 pp. (in Russian)

[8] Kumabe D., Vibration Cutting, Mashinostroenie, M., 1985, 424 pp. (in Russian)

[9] Ilin V. A., Tikhomirov V. V., “The wave equation with boundary control at two ends and the problem of complete damping of a vibration process”, Differential Equations, 35:5 (1990), 692–704 (in Russian)

[10] Kamynin V. L., “The inverse problem of determining the lower-order coefficient in parabolic equation with integral observation”, Mathematical notes, 94:2 (2013), 207–217 (in Russian) | DOI

[11] Cannon J. R., Lin Y., “Determination of a parameter $p(t)$ in some quasi-linear parabolic differential equations”, Inverse Problems, 1988, no. 4, 35–45 (in English) | DOI | MR

[12] Denisov A. M., “The inverse problem for a hyperbolic equation with nonlocal boundary condition involving retarding argument”, Proceedings of Institute of Mathematics and Mechanics. Ural Branch of Russian Academy of Sciences, 18, no. 1, 2012 (in Russian)

[13] Beylin A. B., Pulkina L. S., “On Certain Problem for Hyperbolic Equation with unknown behavior on a part of the boundary”, Vestnik of Samara State University. Natural Science Series, 2017, no. 2, 9–19 (in Russian)

[14] Gradstein V. S., Ryzhik I. M., Tables of integrals, sums, series, and products, Fizmatgiz, M., 1963, 1100 pp. (in Russian)

[15] Mikhlin S. G., Lectures on linear integral equations, Fizmatgiz, M., 1959, 232 pp. (in Russian)