The correctness of the Dirichlet problem in a cylindrical domain for degenerate multidimensional elliptic-parabolic equations
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3 (2017), pp. 7-11 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The correctness of boundary value problems on the plane for elliptic equations by the method of the theory of analytic functions of a complex variable has been well studied. When investigating similar questions, when the number of independent variables is greater than two, problems of a fundamental nature arise. A very attractive and convenient method of singular integral equations loses their validity due to the absence of any full theory of multidimensional singular integral equations. Boundary value problems for second-order elliptic equations in domains with edges have been studied in detail. In the author’s papers explicit forms of classical solutions of Dirichlet problems in cylindrical domains for multidimensional elliptic equations are found. In this paper we use the method proposed in the author’s works, we show the unique solvability and obtain an explicit form of classical solution of the Dirichlet problem in a cylindrical domain for degenerate multidimensional elliptico-parabolic equations.
Keywords: correctness, degeneration, Dirichlet problem, cylindrical domain, spherical functions, orthogonality, Bessel function.
Mots-clés : multidimensional equations
@article{VSGU_2017_3_a0,
     author = {S. A. Aldashev},
     title = {The correctness of the {Dirichlet} problem in a cylindrical domain for degenerate multidimensional elliptic-parabolic equations},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {7--11},
     year = {2017},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2017_3_a0/}
}
TY  - JOUR
AU  - S. A. Aldashev
TI  - The correctness of the Dirichlet problem in a cylindrical domain for degenerate multidimensional elliptic-parabolic equations
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2017
SP  - 7
EP  - 11
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSGU_2017_3_a0/
LA  - ru
ID  - VSGU_2017_3_a0
ER  - 
%0 Journal Article
%A S. A. Aldashev
%T The correctness of the Dirichlet problem in a cylindrical domain for degenerate multidimensional elliptic-parabolic equations
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2017
%P 7-11
%N 3
%U http://geodesic.mathdoc.fr/item/VSGU_2017_3_a0/
%G ru
%F VSGU_2017_3_a0
S. A. Aldashev. The correctness of the Dirichlet problem in a cylindrical domain for degenerate multidimensional elliptic-parabolic equations. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3 (2017), pp. 7-11. http://geodesic.mathdoc.fr/item/VSGU_2017_3_a0/

[1] Fiker G., “On a unified theory of boundary-value problems for second-order elliptic-parabolic equations: collection of translations”, Mathematics, 7:6 (1963), 99–121 (in Russian)

[2] Oleinik O. A., Radkevich E. V., Equations with a nonnegative characteristic form, Izd-vo Mosk. un-ta, M., 2010, 360 pp. (in Russian)

[3] Mikhlin S. G., Multidimensional singular integrals and integral equations, Fizmatgiz, M., 1962, 254 pp. (in Russian)

[4] Kamke E., Handbook of ordinary differential equations, Nauka, M., 1965, 703 pp. (in Russian)

[5] Bateman G., Erdei A., Higher transcendental functions, v. 2, Nauka, M., 1974, 297 pp. (in Russian)

[6] Tikhonov A. N., Samarskiy A. A., Equations of mathematical physics, Nauka, M., 1966, 724 pp. (in Russian)

[7] Aldashev S. A., Boundary value problems for multidimensional hyperbolic and mixed equations, Gylym, Almaty, 1994, 170 pp. (in Russian)

[8] Aldashev S. A., “Correctness of the Dirichlet problem in a cylindrical domain for degenerate multidimensional elliptic equations”, Mathematical Notes, 94:6 (2013), 936–939 (in Russian) | DOI

[9] Aldashev S. A., “The Dirichlet problem in a cylindrical domain for degenerate multidimensional ellipticparabolic equations”, Actual problems of the theory of partial differential equations, Abstracts of the reports of the international scientific conference, MGU, M., 2016, 14 (in Russian)