Quazilinearization method for the solution to the problem of plate with the central circular hole under creep regime
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 2 (2017), pp. 44-50 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The approximation solution of the problem for an infinite plate with the circular hole under creep regime is obtained by the quazilinearization method. Four approximations of the solution of the nonlinear problems are found. It is shown that with increasing of the number of approximations the solution converges to the limit numerical solution. It is worth to note that the tangential stress reaches its maximum value not at the circular hole but at the internal point of the plate. It is also shown that quazilinearization method is an effective method for nonlinear problems.
Keywords: quazilinearization method, plate comprehensively stretching, stress field in the neighborhood of crack tips, nonlinear problems, Beyley–Norton's power law, analytical solution.
@article{VSGU_2017_2_a4,
     author = {L. V. Stepanova and R. M. Zhabbarov},
     title = {Quazilinearization method for the solution to the problem of plate with the central circular hole under creep regime},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {44--50},
     year = {2017},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2017_2_a4/}
}
TY  - JOUR
AU  - L. V. Stepanova
AU  - R. M. Zhabbarov
TI  - Quazilinearization method for the solution to the problem of plate with the central circular hole under creep regime
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2017
SP  - 44
EP  - 50
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSGU_2017_2_a4/
LA  - ru
ID  - VSGU_2017_2_a4
ER  - 
%0 Journal Article
%A L. V. Stepanova
%A R. M. Zhabbarov
%T Quazilinearization method for the solution to the problem of plate with the central circular hole under creep regime
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2017
%P 44-50
%N 2
%U http://geodesic.mathdoc.fr/item/VSGU_2017_2_a4/
%G ru
%F VSGU_2017_2_a4
L. V. Stepanova; R. M. Zhabbarov. Quazilinearization method for the solution to the problem of plate with the central circular hole under creep regime. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 2 (2017), pp. 44-50. http://geodesic.mathdoc.fr/item/VSGU_2017_2_a4/

[1] Kudryashov N. A., Methods of nonlinear mathematical physics, Izdatel'skii dom “Intellekt”, Dolgoprudny, 2010, 368 pp. (in Russian)

[2] Andrianov I., Avreytsevich Ya., Metody asimptoticheskogo analiza i sinteza v nelineinoi dinamike i mekhanike deformiruemogo tverdogo tela, 2013, 276 pp. (in Russian)

[3] Bellman R. E., Kalaba R. E., Quazilinearization and nonlinear boundary-value problems, Mir, M., 1968, 184 pp. (in Russian)

[4] Stepanova L. V., Mathematical methods of fracture mechanics, Samarskii universitet, Samara, 2006, 242 pp. (in Russian)

[5] Boyle J. T., Spence J., Stress analysis for creep, Mir, M., 1986, 360 pp. (in Russian)

[6] Stepanova L. V., “Eigenspectra and orders of stress singularity at a mode I crack tip for a power – low medium”, Comptes Rendus-Mechanique, 2008, no. 1–2, 232–237 (in English) | DOI | Zbl

[7] Shifrin E. I., “Symmetry properties of the recipricity gap functional in the linear elasticity”, International Journal of Fracture, 159:2 (2009), 209–218 (in English) | DOI | MR | Zbl

[8] Shifrin E. I., Shushpannikov P. S., “Identification of a spheroidal defect in an elastic solid using a reciprocity gap functional”, Inverse problems, 26:5 (2010), 055001 (in English) | DOI | MR | Zbl

[9] Shifrin E. I., Shushpannikov P. S., “Identification of small well-separated defects in an isotropic elastic body using boundary measurements”, International Journal of Solids and Structures, 50:22–23 (2013), 3707–3716 (in English) | DOI | MR

[10] Shifrin E. I., Shushpannikov P. S., “Reconstruction of an ellipsoidal defect an anisotropic elastic solid, using results of one static test”, Inverse Problems in Science and Egineering, 21:5 (2013), 781–800 (in English) | DOI | MR | Zbl