@article{VSGU_2017_2_a4,
author = {L. V. Stepanova and R. M. Zhabbarov},
title = {Quazilinearization method for the solution to the problem of plate with the central circular hole under creep regime},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {44--50},
year = {2017},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2017_2_a4/}
}
TY - JOUR AU - L. V. Stepanova AU - R. M. Zhabbarov TI - Quazilinearization method for the solution to the problem of plate with the central circular hole under creep regime JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2017 SP - 44 EP - 50 IS - 2 UR - http://geodesic.mathdoc.fr/item/VSGU_2017_2_a4/ LA - ru ID - VSGU_2017_2_a4 ER -
%0 Journal Article %A L. V. Stepanova %A R. M. Zhabbarov %T Quazilinearization method for the solution to the problem of plate with the central circular hole under creep regime %J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ %D 2017 %P 44-50 %N 2 %U http://geodesic.mathdoc.fr/item/VSGU_2017_2_a4/ %G ru %F VSGU_2017_2_a4
L. V. Stepanova; R. M. Zhabbarov. Quazilinearization method for the solution to the problem of plate with the central circular hole under creep regime. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 2 (2017), pp. 44-50. http://geodesic.mathdoc.fr/item/VSGU_2017_2_a4/
[1] Kudryashov N. A., Methods of nonlinear mathematical physics, Izdatel'skii dom “Intellekt”, Dolgoprudny, 2010, 368 pp. (in Russian)
[2] Andrianov I., Avreytsevich Ya., Metody asimptoticheskogo analiza i sinteza v nelineinoi dinamike i mekhanike deformiruemogo tverdogo tela, 2013, 276 pp. (in Russian)
[3] Bellman R. E., Kalaba R. E., Quazilinearization and nonlinear boundary-value problems, Mir, M., 1968, 184 pp. (in Russian)
[4] Stepanova L. V., Mathematical methods of fracture mechanics, Samarskii universitet, Samara, 2006, 242 pp. (in Russian)
[5] Boyle J. T., Spence J., Stress analysis for creep, Mir, M., 1986, 360 pp. (in Russian)
[6] Stepanova L. V., “Eigenspectra and orders of stress singularity at a mode I crack tip for a power – low medium”, Comptes Rendus-Mechanique, 2008, no. 1–2, 232–237 (in English) | DOI | Zbl
[7] Shifrin E. I., “Symmetry properties of the recipricity gap functional in the linear elasticity”, International Journal of Fracture, 159:2 (2009), 209–218 (in English) | DOI | MR | Zbl
[8] Shifrin E. I., Shushpannikov P. S., “Identification of a spheroidal defect in an elastic solid using a reciprocity gap functional”, Inverse problems, 26:5 (2010), 055001 (in English) | DOI | MR | Zbl
[9] Shifrin E. I., Shushpannikov P. S., “Identification of small well-separated defects in an isotropic elastic body using boundary measurements”, International Journal of Solids and Structures, 50:22–23 (2013), 3707–3716 (in English) | DOI | MR
[10] Shifrin E. I., Shushpannikov P. S., “Reconstruction of an ellipsoidal defect an anisotropic elastic solid, using results of one static test”, Inverse Problems in Science and Egineering, 21:5 (2013), 781–800 (in English) | DOI | MR | Zbl