Mackay functions and exact cutting in spaces of modular forms
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 2 (2017), pp. 15-25

Voir la notice de l'article provenant de la source Math-Net.Ru

In the article we consider structure problems in the theory of modular forms. The phenomenon of the exact cutting for the spaces $S_k(\Gamma_0(N),\chi),$ where $\chi$ is a quadratic character with the condition $\chi(- 1) = ( - 1)^k$. We prove that for the levels $N \ne 3,~17,~19$ the cutting function is a multiplicative eta-product of an integral weight. In the article we give the table of the cutting functions. We prove that the space of an cutting function is one-dimensional. Dimensions of the spaces are calculated by the Cohen–Oesterle formula, the orders in cusps are calculated by the Biagioli formula.
Keywords: modular forms, cusp forms, Dedekind eta-function, cusps, Eisenstein series, divisor of function, structure theorems, Cohen–Oesterle formula.
@article{VSGU_2017_2_a1,
     author = {G. V. Voskresenskaya},
     title = {Mackay functions and exact cutting in spaces of modular forms},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {15--25},
     publisher = {mathdoc},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2017_2_a1/}
}
TY  - JOUR
AU  - G. V. Voskresenskaya
TI  - Mackay functions and exact cutting in spaces of modular forms
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2017
SP  - 15
EP  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGU_2017_2_a1/
LA  - ru
ID  - VSGU_2017_2_a1
ER  - 
%0 Journal Article
%A G. V. Voskresenskaya
%T Mackay functions and exact cutting in spaces of modular forms
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2017
%P 15-25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGU_2017_2_a1/
%G ru
%F VSGU_2017_2_a1
G. V. Voskresenskaya. Mackay functions and exact cutting in spaces of modular forms. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 2 (2017), pp. 15-25. http://geodesic.mathdoc.fr/item/VSGU_2017_2_a1/