Mackay functions and exact cutting in spaces of modular forms
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 2 (2017), pp. 15-25 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the article we consider structure problems in the theory of modular forms. The phenomenon of the exact cutting for the spaces $S_k(\Gamma_0(N),\chi),$ where $\chi$ is a quadratic character with the condition $\chi(- 1) = ( - 1)^k$. We prove that for the levels $N \ne 3,~17,~19$ the cutting function is a multiplicative eta-product of an integral weight. In the article we give the table of the cutting functions. We prove that the space of an cutting function is one-dimensional. Dimensions of the spaces are calculated by the Cohen–Oesterle formula, the orders in cusps are calculated by the Biagioli formula.
Keywords: modular forms, cusp forms, Dedekind eta-function, cusps, Eisenstein series, divisor of function, structure theorems, Cohen–Oesterle formula.
@article{VSGU_2017_2_a1,
     author = {G. V. Voskresenskaya},
     title = {Mackay functions and exact cutting in spaces of modular forms},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {15--25},
     year = {2017},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2017_2_a1/}
}
TY  - JOUR
AU  - G. V. Voskresenskaya
TI  - Mackay functions and exact cutting in spaces of modular forms
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2017
SP  - 15
EP  - 25
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSGU_2017_2_a1/
LA  - ru
ID  - VSGU_2017_2_a1
ER  - 
%0 Journal Article
%A G. V. Voskresenskaya
%T Mackay functions and exact cutting in spaces of modular forms
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2017
%P 15-25
%N 2
%U http://geodesic.mathdoc.fr/item/VSGU_2017_2_a1/
%G ru
%F VSGU_2017_2_a1
G. V. Voskresenskaya. Mackay functions and exact cutting in spaces of modular forms. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 2 (2017), pp. 15-25. http://geodesic.mathdoc.fr/item/VSGU_2017_2_a1/

[1] Koblitz N., Introduction in elliptic curves and modular forms, Mir, M., 1988, 320 pp. (in Russian) | MR

[2] Knapp A., Elliptic curves, Faktorial Press, M., 2004, 488 pp. (in Russian)

[3] Gordon B., Sinor D., “Multiplicative properties of $\eta$-products”, L.N.M., 1395 (1987), 173–200 (in English) | MR

[4] Ono K., The web of modularity: arithmetic of the coefficients of modular forms and q-series, A.M.S., Providence, 2004, 216 pp. (in English) | MR | Zbl

[5] Dummit D., Kisilevsky H., MasKay J., “Multiplicative products of $\eta-$ functions”, Contemp. Math., 45 (1985), 89–98 (in English) | DOI | MR | Zbl

[6] Voskresenskaya G. V., “One special class of modular forms and group representations”, Journal de Theorie des Nombres de Bordeaux, 11 (1999), 247–262 (in English) | DOI | MR | Zbl

[7] Cohen H., Oesterle J., “Dimensions des espaces de formes modulaires”, LNM, 627 (1976), 69–78 (in French) | MR

[8] Voskresenskaya G. V., “Dedekind's eta-function in modern investigations”, Journal of Mathematical Sciences, 136 (2017), 103–137 (in Russian)

[9] Chudakov N. G., Introduction in Dirichlet $L$-functions, Gostekhizdat, M., 1947, 204 pp. (in Russian) | MR

[10] Biagioli A. J. F., “The construction of modular forms as products of transforms of the Dedekind eta-function”, Acta Arithm., LIV:4 (1990), 273–300 (in English) | MR | Zbl