A problem on vibration of a bar with unknown boundary condition on a part of the boundary
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 2 (2017), pp. 7-14
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we study an inverse problem for hyperbolic equation. This problem arises when we consider vibration of a nonhomogeneous bar if one endpoint is fixed by spring but behavior of the
other is unknown and is the subject to find. Overdetermination is given in the form of integral with respect to spacial variable. Unique solvability of this problem is proved under some conditions on data.
The proof is based on a priori estimates in Sobolev space.
Keywords:
hyperbolic equation, inverse problem, integral overdetermination.
@article{VSGU_2017_2_a0,
author = {A. B. Beylin and L. S. Pulkina},
title = {A problem on vibration of a bar with unknown boundary condition on a part of the boundary},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {7--14},
publisher = {mathdoc},
number = {2},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2017_2_a0/}
}
TY - JOUR AU - A. B. Beylin AU - L. S. Pulkina TI - A problem on vibration of a bar with unknown boundary condition on a part of the boundary JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2017 SP - 7 EP - 14 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGU_2017_2_a0/ LA - ru ID - VSGU_2017_2_a0 ER -
%0 Journal Article %A A. B. Beylin %A L. S. Pulkina %T A problem on vibration of a bar with unknown boundary condition on a part of the boundary %J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ %D 2017 %P 7-14 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGU_2017_2_a0/ %G ru %F VSGU_2017_2_a0
A. B. Beylin; L. S. Pulkina. A problem on vibration of a bar with unknown boundary condition on a part of the boundary. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 2 (2017), pp. 7-14. http://geodesic.mathdoc.fr/item/VSGU_2017_2_a0/