A problem on vibration of a bar with unknown boundary condition on a part of the boundary
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 2 (2017), pp. 7-14 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we study an inverse problem for hyperbolic equation. This problem arises when we consider vibration of a nonhomogeneous bar if one endpoint is fixed by spring but behavior of the other is unknown and is the subject to find. Overdetermination is given in the form of integral with respect to spacial variable. Unique solvability of this problem is proved under some conditions on data. The proof is based on a priori estimates in Sobolev space.
Keywords: hyperbolic equation, inverse problem, integral overdetermination.
@article{VSGU_2017_2_a0,
     author = {A. B. Beylin and L. S. Pulkina},
     title = {A problem on vibration of a bar with unknown boundary condition on a part of the boundary},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {7--14},
     year = {2017},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2017_2_a0/}
}
TY  - JOUR
AU  - A. B. Beylin
AU  - L. S. Pulkina
TI  - A problem on vibration of a bar with unknown boundary condition on a part of the boundary
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2017
SP  - 7
EP  - 14
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSGU_2017_2_a0/
LA  - ru
ID  - VSGU_2017_2_a0
ER  - 
%0 Journal Article
%A A. B. Beylin
%A L. S. Pulkina
%T A problem on vibration of a bar with unknown boundary condition on a part of the boundary
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2017
%P 7-14
%N 2
%U http://geodesic.mathdoc.fr/item/VSGU_2017_2_a0/
%G ru
%F VSGU_2017_2_a0
A. B. Beylin; L. S. Pulkina. A problem on vibration of a bar with unknown boundary condition on a part of the boundary. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 2 (2017), pp. 7-14. http://geodesic.mathdoc.fr/item/VSGU_2017_2_a0/

[1] Babakov I. M., Theory of vibrations, Nauka, M., 1968, 560 pp. (in Russian)

[2] Birger I. A., Shorr B. F., Iosilevich G. B., Valculation of stress of machine elements, Reference book, Mashinostroenie, M., 1993, 640 pp. (in Russian)

[3] Khazanov Kh. S., Mechanical oscillations of systems with distributed parameters, Textbook, Samar. Gosud. Aerokosmich. Un-t, Samara, 2002, 80 pp. (in Russian)

[4] Veitz V. L., Dondoshanskii V. K., Chiriaev V. I., Forced oscillations in cutting machines, Mashgiz, M.–L., 1959, 288 pp. (in Russian)

[5] Kumabe D., Vibration Cutting, Mashinostroenie, M., 1985, 424 pp. (in Russian)

[6] Rao J. S., Advanced Theory of Vibration, Wiley, N.Y., 1992, 431 pp. (in English)

[7] Fedotov I. A., Polyanin A. D., Shatalov M. Yu., “Theory of free and forced vibration of rigid rod based on Rayleigh model”, Dokladyi Akademii nauk, 417:1 (2007), 56–61 (in Russian) | Zbl

[8] Beylin A. B., Pulkina L. S., “A Problem on Longitudinal Vibration in a Short Bar with Dynamical Boundary Conditions”, Vestnik of Samara State University. Natural Science Series, 2014, no. 3(114), 9–19 (in Russian)

[9] Beylin A. B., “The problem of longitudinal oscillations of an elastically fixed loaded rod”, Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 20:2 (2016), 249–258 (in Russian) | DOI | Zbl

[10] Prilepko A. I., Kostin A. B., “On inverse problems of determining of a coefficient in a parabolic equation. II”, Siberian Mathematical Journal, 34:5 (1993) (in Russian)

[11] Kamynin V. L., “The inverse problem of determining the lower-order coefficient in parabolic equation with integral observation”, Mathematical Notes, 94:2 (2013), 205–213 (in English) | DOI | DOI | MR | Zbl

[12] Cannon J. R., Lin Y., “Determination of a parameter $p(t)$ in some quasi-linear parabolic differential equations”, Inverse Problems, 1988, no. 4, 35–45 (in English) | DOI | MR | Zbl

[13] Denisov A. M., “The inverse problem for a hyperbolic equation with nonlocal boundary condition involving retarding argument”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 18, no. 1, 2012 (in Russian)

[14] Ladyzhenskaya O. A., The boundary value problems in mathematical physics, Nauka, M., 1973 (in Russian)

[15] Pulkina L. S., “Boundary-value problems for a hyperbolic equation with nonlocal conditions of the I and II kind”, Russian Mathematics (Iz. VUZ), 2012, no. 4, 74–83 (in Russian)