@article{VSGU_2017_2_a0,
author = {A. B. Beylin and L. S. Pulkina},
title = {A problem on vibration of a bar with unknown boundary condition on a part of the boundary},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {7--14},
year = {2017},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2017_2_a0/}
}
TY - JOUR AU - A. B. Beylin AU - L. S. Pulkina TI - A problem on vibration of a bar with unknown boundary condition on a part of the boundary JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2017 SP - 7 EP - 14 IS - 2 UR - http://geodesic.mathdoc.fr/item/VSGU_2017_2_a0/ LA - ru ID - VSGU_2017_2_a0 ER -
%0 Journal Article %A A. B. Beylin %A L. S. Pulkina %T A problem on vibration of a bar with unknown boundary condition on a part of the boundary %J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ %D 2017 %P 7-14 %N 2 %U http://geodesic.mathdoc.fr/item/VSGU_2017_2_a0/ %G ru %F VSGU_2017_2_a0
A. B. Beylin; L. S. Pulkina. A problem on vibration of a bar with unknown boundary condition on a part of the boundary. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 2 (2017), pp. 7-14. http://geodesic.mathdoc.fr/item/VSGU_2017_2_a0/
[1] Babakov I. M., Theory of vibrations, Nauka, M., 1968, 560 pp. (in Russian)
[2] Birger I. A., Shorr B. F., Iosilevich G. B., Valculation of stress of machine elements, Reference book, Mashinostroenie, M., 1993, 640 pp. (in Russian)
[3] Khazanov Kh. S., Mechanical oscillations of systems with distributed parameters, Textbook, Samar. Gosud. Aerokosmich. Un-t, Samara, 2002, 80 pp. (in Russian)
[4] Veitz V. L., Dondoshanskii V. K., Chiriaev V. I., Forced oscillations in cutting machines, Mashgiz, M.–L., 1959, 288 pp. (in Russian)
[5] Kumabe D., Vibration Cutting, Mashinostroenie, M., 1985, 424 pp. (in Russian)
[6] Rao J. S., Advanced Theory of Vibration, Wiley, N.Y., 1992, 431 pp. (in English)
[7] Fedotov I. A., Polyanin A. D., Shatalov M. Yu., “Theory of free and forced vibration of rigid rod based on Rayleigh model”, Dokladyi Akademii nauk, 417:1 (2007), 56–61 (in Russian) | Zbl
[8] Beylin A. B., Pulkina L. S., “A Problem on Longitudinal Vibration in a Short Bar with Dynamical Boundary Conditions”, Vestnik of Samara State University. Natural Science Series, 2014, no. 3(114), 9–19 (in Russian)
[9] Beylin A. B., “The problem of longitudinal oscillations of an elastically fixed loaded rod”, Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 20:2 (2016), 249–258 (in Russian) | DOI | Zbl
[10] Prilepko A. I., Kostin A. B., “On inverse problems of determining of a coefficient in a parabolic equation. II”, Siberian Mathematical Journal, 34:5 (1993) (in Russian)
[11] Kamynin V. L., “The inverse problem of determining the lower-order coefficient in parabolic equation with integral observation”, Mathematical Notes, 94:2 (2013), 205–213 (in English) | DOI | DOI | MR | Zbl
[12] Cannon J. R., Lin Y., “Determination of a parameter $p(t)$ in some quasi-linear parabolic differential equations”, Inverse Problems, 1988, no. 4, 35–45 (in English) | DOI | MR | Zbl
[13] Denisov A. M., “The inverse problem for a hyperbolic equation with nonlocal boundary condition involving retarding argument”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 18, no. 1, 2012 (in Russian)
[14] Ladyzhenskaya O. A., The boundary value problems in mathematical physics, Nauka, M., 1973 (in Russian)
[15] Pulkina L. S., “Boundary-value problems for a hyperbolic equation with nonlocal conditions of the I and II kind”, Russian Mathematics (Iz. VUZ), 2012, no. 4, 74–83 (in Russian)